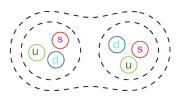
Sexaquark Mass in the Cooper Triples Formalism

Biplab Mahato

@ Kraków

December 13, 2025


Motivation

- Sexaquark has been hypothesised to be a deeply bound, compact six-quark bound state of (uuddss).
- It has been proposed as a candidate for dark matter. (Farrar (2018))
- Numerous work including its effect on the softening of equation of state for neutron stars. (Shahrbaf et. al. (2022)).
- Experimental signal is yet to be observed. Dores-Farrar-Kornakov¹ proposed antiproton-nucleus system $\bar{p}-{}^{3}\mathrm{He}{}'\mathrm{s}$ annihilation as a probe.
- There has been a significant debate on its mass.
- I will introduce a model inspired from condensed matter physics to describe the mass.

¹Eur. Phys. J. C (2023) 83:1149

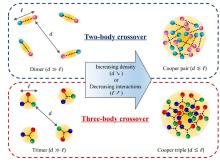
Sexaquark

- It is different from Dihyperon.
- It is proposed to be neutral, flavor singlet scalar particle with spin 0⁺.
- If the sexaquark binding energy deep enough then the decay can happen via doubly weak process granting it a lifetime greater than the age of the universe. Which makes it a very good candidate for dark matter.

H-dibaryon (ΛΛ molecule)

Sexaquark (3-diquark state)

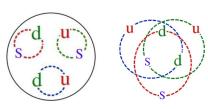
Sexaquark Mass


- Theoretical estimation of Sexaquark mass has a very broad range.
- MIT bag model with SU(3)_f predicts 1760MeV.
- From QCD sum rules in SU(3)_f 1878MeV and 2190MeV otherwise.
- Three diquark state with chromomagnetic and electric interaction $M_S=1883 {
 m MeV}.~({
 m Buccella~PoS})$

Bounds

- 1200MeV sexaquark can thermally repoduce the desired cosmological dark matter abundances.
- Nuclear stability restricts smaller sexaquark masses. $M_S \geq 1860 MeV$.
- Masses below 1878MeV allows for stability against faster decay.
- So the interested region is the narrow region of mass between 1860 and 1878MeV.

Cooper Triples


- Cooper Triples are extension of the Cooper pairs in condensed matter physics.
- Three particles near the Fermi surface interact with each other with the three body forces.
- It also undergoes
 Superconducting to
 Bose-Einstein
 condensate(BCS-BEC)
 transistion, which has been
 mapped to hadron-quark
 crossover in the paper
 (Tajima et. al. (2023)).

(Photo: Tajima et al. (2023))

Cooper Triples

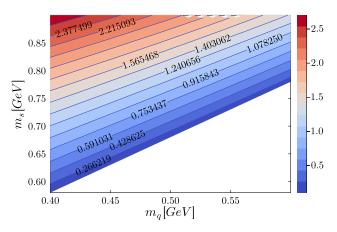
- The same method can be extended to include diquarks instead of quarks, creating sexaquark.
- Blaschke et. al. has used this framework in the context of quark deconfinement in compact stars.

(Photo: Blaschke et al. arxiv:2202.05061)

Cooper Triples

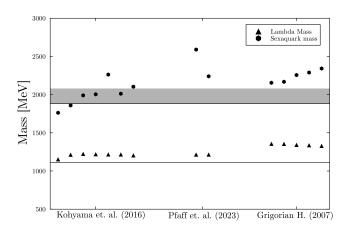
• We solve the in-medium 3-particle T matrix with contact interaction.

$$T_3(\Omega) = \frac{V_3}{1 - V_3 \Sigma_3(\Omega)}$$


$$\Sigma(\Omega) = \sum_{\vec{k}, \vec{q}} \frac{(1 - f_{\vec{k}})(1 - f_{\vec{q}})(1 - f_{\vec{k} + \vec{q}}) + f_{\vec{k}} f_{\vec{q}} f_{\vec{k} + \vec{q}}}{\Omega + 3\mu - \varepsilon_{\vec{k}} - \varepsilon_{\vec{q}} - \varepsilon_{\vec{k} + \vec{q}}}$$

where $f_{\vec{k}} = -\eta/\left(\exp\left[\beta(\varepsilon_{\vec{k}} - \mu)\right] - \eta\right)$ where $\eta = \pm 1$ negative(positive) for Fermions(Bosons) as constituent particles.

Sexaquark Mass Prediction


- We have two unknowns the constant coupling V_3 and a regularization cutoff(Λ) for the integrals.
- We treat Nucleon and Lambda baryon as Cooper triples of quarks and use their physical masses to fix the above parameters.
- The same parameters are used to calculate the sexaquark masses while treating it as a Cooper triples of three diquarks.
- ullet Color confinement requires the diquarks inside sexaquarks to have same colors as quarks inside baryons. Since the coupling V_3 (assumed to be flavor agnostic), which is a proxy for gluonic interaction depends solely on color charges, one can use the same coupling for quarks and diquarks.

Sexaquark Mass Prediction

 We don't fix the quark masses and calculate sexaquark mass as a function of them. Diquark masses are taken to their thresold values.

Sexaquark Mass Prediction

 We take quark and diquark masses from chiral effective models parameters from various sources.

Medium Dependence

- Medium dependence of sexaquark requires input of the quark's medium dependence. Here we use 3 flavor NJL model for that.
- Sexaquark undergoes Mott dissociation at finite temperature, where stable bound sexaquark becomes unstable state with decay widths.

Conclusions

- Sexaquark is an interesting candidate to explore both theoretically and experimentally.
- We present an approach where we treat sexaquark as Cooper Triples.
- The simplistic model can reproduce mass of sexaquark consistent with the relevant bounds.
- In medium, either in high temperature or densities it undergoes Mott transition.
- In future it would be interesting to see more in medium effects such as Borromean state where the consituent diquarks becomes unbound while the sexaquarks remains bound.
- A more bootom-up approach using cluster decomposition is warrented.

Thank You!!