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PART 1: PHYSICS MOTIVATION
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Non-central collisions of heavy ions

Non-central heavy-ion collisions create fireballs with large global angular momenta,
some part of the angular momentum can be transferred from the orbital to the spin part

Jinit = Linit = Lfinal + Sfinal

[Michael Lisa, talk „Strangeness in Quark Matter 2016”]

Warning: large angular momentum does not mean large angle of rotation!
∆t = 1 fm/c = 3 × 10−24 s, ∆φ = ∆t ωmax = 27 × 10−24

× 1021 = 2.7 × 10−2
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PART 2: STANDARD RELATIVISTIC HYDRODYNAMIC
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Standard model (scheme) of heavy-ion collisions

RELATIVISTIC HYDRODYNAMICS FORMS THE BASIC INGREDIENT OF THE STANDARD MODEL OF HEAVY-ION COLLISIONS

Hadron Freezeout

Hydrodynamic"

Evolution

Energy Stopping

Hard Collisions


Initial state


Time 

T. K. Nayak, Lepton-Photon 2011 Conference

data on spin polarization suggest that spin should be included in the hydrodynamic framework
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Perfect fluid hydrodynamics
PERFECT-FLUID HYDRODYNAMICS = local equilibrium + conservation laws

one usually includes energy, linear momentum, baryon number, ...

T (temperature), uµ (three independent components of flow), µ (baryon chemical potential)

ε (energy density), P (pressure), n (baryon density), σ (entropy density), ξ = µ/T

Tµν = [ε(T , µ) + P(T , µ)] uµuν − P(T , µ)gµν (1)

∂µTµν = 0, ∂µNµ = ∂µ(nuµ) = 0 (4+1 eqs.) (2)

five equations for five unknown functions

dissipation does not appear

∂µSµ = ∂µ(σuµ) = 0 (1 eq.) (3)

entropy conservation follows from the energy-momentum conservation and the form of the energy-momentum tensor

Euler’s equation (says that four-acceleration is caused by the pressure gradient)

uλ∂λuµ ≡ aµ =
(gµν−uµuν)

ε+P ∂νP ≡ 1
ε+P ∆µν∂νP (3 eqs.) (4)
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PART 3: CLASSICAL APPROACH TO SPIN
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Classical treatment of spin – internal angular momentum

A particle can be characterised by the internal angular momentum tensor sαβ

M. Matthison, Acta Phys. Polon. 6 (1937) 163

Mathisson with Pauli

Copenhagen 1937

sαβ = 1
m ε

αβγδpγsδ, s · p = 0, sα = 1
2m ε

αβγδpβsγδ (5)

A straightforward generalization of the phase-space distribution function f (x ,p) is a spin dependent distribution f (x ,p, s)

WF, A. Kumar, R. Ryblewski, Prog. Part. Nucl. Phys. 108 (2019) 103709

∫
dS . . . =

m
π ‘

∫
d4s δ(s · s + ‘2) δ(p · s) . . . ‘2 =

1
2

(
1 +

1
2

)
=

3
4

(6)

∫
dS =

m
π ‘

∫
d4s δ(s · s + ‘2) δ(p · s) = 2 (7)

from now on, we consider spin 1/2 only
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Local equilibrium distribution without spin: Maxwell-Jüttner distribution

Maxwell distribution

feq(v) =

[
m

2πkBT

]3/2

exp

[
−

mv2

2kBT

]
(8)

Maxwell-Jüttner distribution (natural units, Boltzmann statistics)

feq(p) = exp

−
√

m2 + p2

T

→ exp

−
√

m2 + p2 − µ

T

 (9)

f (x ,p) phase space distribution for unpolarized systems, Lorentz scalar

feq(x ,p) = 2 exp

[
−

pµuµ(x) − µ(x)

T (x)

]
= 2 exp

[
−pµβµ(x) + ξ(x)

]
(10)

ξ = µ/T ratio of the baryon chemical potential and
temperature, βµ = uµ/T ratio of the hydrodynamic flow
and temperature, 2 - spin degeneracy

u ′µ = (1, 0, 0, 0) in the local fluid rest frame (LRF)
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Local equilibrium function with spin, macroscopic currents

WF, A. Kumar, R. Ryblewski, Prog. Part. Nucl. Phys. 108 (2019) 103709

spin conserving equilibrium distribution functions for particles and antiparticles

f±eq(x ,p, s) = exp
(
±ξ(x) − p · β(x) + 1

2ωαβ(x)sαβ
)

(11)

macroscopic currents

baryon current

Nλ
eq =

∫
dP

∫
dS pλ1

[
f +
eq(x ,p, s) − f−eq(x ,p, s)

]
(12)

energy-momentum tensor

Tλµeq =

∫
dP

∫
dS pλpµ

[
f +
eq(x ,p, s) + f−eq(x ,p, s)

]
(13)

spin tensor

Sλ,µνeq =

∫
dP

∫
dS pλ sµν

[
f +
eq(x ,p, s) + f−eq(x ,p, s)

]
(14)
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Classical treatment of spin – spin hydrodynamics

construction of the equilibrium function implies the conservation laws

∂µNµ(x) = 0, ∂µTµν(x) = 0, ∂λSλ,µν(x) = 0 (15)

these are 11 equations for 11 Lagrange multipliers

∂µNµ[ξ(x), βα(x), ωαβ(x)] = 0 (1 eq.) (16)

∂µTµν[ξ(x), βα(x), ωαβ(x)] = 0 (4 eqs.) (17)

∂λSλ,µν[ξ(x), βα(x), ωαβ(x)] = 0 (6 eqs.) (18)

PERFECT-SPIN HYDRODYNAMICS

WF, B. Friman, A. Jaiswal, E. Speranza, Phys. Rev. C97 (2018) 041901
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Does it all make sense?

CLASSICAL SPIN ≡ SPIN OPERATOR EXPECTATION VALUE
classical spin should be undestood as the expectation value of the spin polarization operator
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Does it all make sense?

CONSERVED SPIN – PHYSICALLY MOTIVATED STARTING POINT

standard spin-orbit (as considered in atomic physics) is mediated by the magnetic field, coherent process, can be
included in spin magneto-hydrodynamics (spin-MHD)
S. Bhadury, WF, A. Jaiswal, A. Kumar, R. Ryblewski, PRL129 (2022) 192301

conservation of the total angular momentum of a particle implies conservation of spin if collisions are local

(spacetime coordinate xµ can be always set equal to 0)

jαβ = lαβ + sαβ = xαpβ − xβpα + sαβ (19)

transfer between orbital and spin part is possible if collisions are non-local , this leads to dissipation and entropy
production, series of influential works by the Frankfurt group
N. Weickgenannt, E. Speranza, Xin-Li Sheng, Q. Wang, D. Rischke, PRL127 (2021) 052301

perfect spin hydrodynamics = spin conservation

dissipative spin hydrodynamics = transfer between S and L possible

Joseph Kapusta: strange quark spin or helicity is unchanged from the time they are created to the time they hadronize
J. Kapusta, E. Rrapaj, S. Rudaz, PRC101 (2020) 024907
Sidney Coleman’s QFT: as the collision energies decrease, all processes are dominated by s-wave scattering

perfect spin hydro (conserving spin) is a convenient starting point to construct the formalism
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PART 3: QUANTUM APPROACH TO SPIN
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Quantum spin description: spin vs. spinor density matrix

standard scalar functions f (x ,p) are generalized to 2×2 Hermitian matrices in spin space for each value of the
space-time position x and four-momentum p, the sign ± distinguishes particles from antiparticles, σ - Pauli matrices

ζ±∗ = 0 no polarization, ζ±∗ = 1 pure state, 0 < |ζ±∗ | < 1 mixed state, asterisk denotes the particle rest frame (PRF)

f±rs (x ,p) = f±0 (x ,p)
[
δrs + ζ±∗ (x ,p) · σrs

]
, 0 ≤ |ζ±∗ | ≤ 1 (20)

ζ±∗ (x ,p) can be interpreted as a spatial part of the polarization four-vector ζ±µ∗ (x ,p) with

a vanishing zeroth component

ζ
±µ
∗ =

(
0,ζ±∗

)
(21)

in the LAB frame – ζ±µ∗ boosted with the velocity defined by the particle velocity

ζ
µ
±

= Λ
µ
ν(vp)ζν±∗ =

(
p · ζ±∗

m
, ζ±∗ +

p · ζ±∗
m(Ep + m)

p
)
, ζ

µ
±

pµ = 0 (22)

transition to 4×4 spinor density matrices X±

f +
rs (x ,p) = ūr (p)X+us(p), f−rs (x ,p) = −v̄s(p)X−vr (p) (23)

us(p) and vr (p) – Dirac bispinors
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Quantum spin description: local equilibrium spinor density matrix

F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Annals Phys. 338 (2013) 32
WF, B. Friman, A. Jaiswal, E. Speranza, Phys. Rev. C97 (2018) 041901

Σµν = (i/4)[γµ , γν] is the Dirac spin operator

X±(x ,p) = exp

[
±ξ(x) − βµ(x)pµ ±

1
2
ωµν(x)Σµν

]
(24)

ωµν = Ωµν/T ratio of the tensor spin chemical potential and temperature, altogether we have 11 Lagrange multipliers
that control the conservation of the baryon number (1), energy (1), linear momentum (3), angular momentum (3), and
Lorentz boost vectors (3)

WF, B. Friman, A. Jaiswal, E. Speranza, R. Ryblewski, Phys. Rev. D97 (2018) 116017
problems with the normalization of the polarization vector

REVISED FORMULA: S. Bhadury, Z. Drogosz, WF, S. K. Kar, V. Mykhaylova, arXiv:2505.02657
with a spacelike four-vector aµ (a2 < 0)

X± = exp
(
±ξ − βµpµ + γ5 /a

)
= exp

(
±ξ − βµpµ

)
cosh

√
−a2

1 +
γ5 /a√
−a2

tanh
√
−a2

 (25)

aµ(x ,p) = − 1
2m ω̃µν(x)pν (26)

more in the next talk by Valeriya Mykhaylova
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Quantum spin description: macroscopic currents

S. R. de Groot, W. A. van Leeuwen, Ch. G. van Weert, Relativistic kinetic theory, North-Holland Publishing Company 1980

baryon current: Nλ(x) =

2∑
r=1

∫
dP pλ1

[
f +
rr (x ,p) − f−rr (x ,p)

]
(27)

energy-momentum tensor: Tλµ(x) =

2∑
r=1

∫
dP pλpµ

[
f +
rr (x ,p) + f−rr (x ,p)

]
(28)

spin tensor: Sλ,µν(x) =
1
2

2∑
r ,s=1

∫
dP pλ

[
σ

+µν
sr (p)f +

rs (x ,p) + σ
−µν
sr (p)f−rs (x ,p)

]
(29)

where σ+µν
sr (p) = 1/(2m) ūs(p)σµνur (p) and σ

−µν
sr (p) = 1/(2m) v̄r (p)σµνvs(p), with σµν = (i/2)[γµ , γν]

these forms of currents are commonly known as the GLW versions (GLW pseudogauge)
for free Dirac equation (relativistic gas) these tensors are conserved

∂µNµ(x) = 0, ∂µTµν(x) = 0, ∂λSλ,µν(x) = 0 (30)

connections between classical and quantum spin: talk by Zbigniew Drogosz
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PART 3: PSEUDOGAUGE FREEDOM

vs. PSEUDOGAUGE DEPENDENCE
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BLASPHEMY #3 (GLW form): ENERGY-MOMENTUM TENSOR SHOULD BE USED IN THE
BELINFANTE-ROSENFELD FORM, SINCE THIS FORM APPEARS IN EINSTEIN’S EQUATIONS

Pseudo-gauge transformation (QCD language in the context of the proton spin puzzle: adding boundary terms)

T ′µν = Tµν +
1
2
∂λ

(
Φλ,µν + Φν,µλ + Φµ,νλ

)
(31)

S′λ,µν = Sλ,µν −Φλ,µν + ∂ρZµν,λρ (32)

Canonical forms (directly obtained from Noether’s Theorem): asymmetric energy-momentum tensor, spin tensor directly
expressed by axial current (couples to weak interactions)

Belinfante-Rosenberg version, Φλ,µν = Sλ,µν , Zµν,λρ = 0, (couples to classical gravity); spin tensor appears in modified
theories of gravity, couples to torsion

de Groot, van Leuveen, van Weert (GLW) forms: symmetric energy-momentum tensor and conserved spin tensor

Hilgevoord and Wouthuysen (HW) choice: symmetric energy-momentum tensor and conserved spin tensor

there is ongoing discussion if the physics is or is not pseudogauge dependent F. Hehl, Rept. Math. Phys. 9 (1976) 55

Sidney Coleman’s old answer: ...we have an infinite family of possible definitions of the local current...some textbooks try

to avoid this point, or nervously rub one foot across the other leg and natter about the best definition or the optimum

definition...and the right answer is, of course, there’s nothing to natter about, there’s nothing to be disturbed about...it is

something to be pleased about. If we have many objects that satisfy desirable general criteria, then that’s better than

having just one... the more freedom you have, the better. It’s like being passed a plate of cookies and someone starts

arguing about which is the best cookie. They’re all edible!
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GLW→ canonical→ Belinfante-Rosenfeld

WF, A. Kumar, R. Ryblewski, Prog. Part. Nucl. Phys. 108 (2019) 103709

GLW→ canonical: superpotential defined as Φ
λ,µν
can ≡ Sµ,λνGLW − Sν,λµGLW , then we have

Sλ,µνcan = Sλ,µνGLW −Φ
λ,µν
can

and

Tµνcan = TµνGLW +
1
2
∂λ

(
Φ
λ,µν
can + Φ

µ,νλ
can + Φ

ν,µλ
can

)
canonical→ Belinfante-Rosenfeld: superpotential defined as ΦBel = Sλ,µνcan

Sλ,µνBel = 0, TµνBel = Tµνcan +
1
2
∂λ

(
Sλ,µνcan − Sµ,λνcan − Sν,λµcan

)
,
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PART 4: THERMODYNAMICS WITH SPIN
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inclusion of spin, Ωαβ - spin chemical potential

Sαβ - spin density tensor introduced in J. Weyssenhoff, A. Raabe, Acta Phys. Polon. 9 (1947) 7

ε+ P = Tσ+ µn + 1
2 ΩαβSαβ (33)

dε = Tdσ+ µdn + 1
2 ΩαβdSαβ dP = σdT + ndµ+ 1

2 SαβdΩαβ (34)

multiplication of the above equations by the hydrodynamic flow vector u gives the tensor (Israel-Stewart) form
W. Israel, J.M.Stewart, Annals Phys. 118 (1979) 341 & Phys.Lett. A58 (1976) 213

Sµeq = Pβµ − ξNµ
eq + βλTλµeq −

1
2ωαβS

µ,αβ
eq (35)

dSµeq = −ξdNµ
eq + βλdTλµeq −

1
2ωαβdSµ,αβeq , d(Pβµ) = Nµ

eqdξ − Tλµeq dβλ + 1
2 Sµ,αβeq dωαβ (36)

spin tensor

Sµ,αβeq = uµSαβeq (37)

analog to the perfect-fluid forms of Nµ
eq and Tλµeq , however, in kinetic theory we find

Sµ,αβeq = uµSαβeq + problem (38)

problem = term that is not proportional to uλ
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a solution stands behind the corner ..........
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WF, M. Hontarenko, PRL134 (2025) 082302
Z.. Drogosz, WF, M. Hontarenko, PRD 110 (2024) 096018
Boltzmann’s definition of the entropy (H-function)

Sµ =−

∫
dP dS pµ

[
f +

(
ln f +

−1
)
+f−

(
ln f−− 1

)]
classical spin (39)

Sµ = −
1
2

∫
dP pµ

{
tr4

[
X+

(
ln X+

− 1
)]

+ tr4
[
X−

(
ln X− − 1

)]}
quantum spin (40)

Together with other kinetic-theory expressions, one obtains tensor forms of thermodynamic relations

valid for any value of the spin polarization tensor ω

Sµeq = Tµαeq βα −
1
2
ωαβS

µ,αβ
eq − ξNµ

eq +Nµ, N
µ = coth ξ Nµ

eq , Puµ (41)

dSµeq = −ξdNµ
eq + βλdTλµeq −

1
2ωαβdSµ,αβeq first law of thermodynamics (42)

dNµ = Nµ
eqdξ − Tλµeq dβλ + 1

2 Sµ,αβeq dωαβ Gibbs-Duhem relations (43)

entropy conservation as a consequence of other conservation laws, very close similarity to MHD
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PART 5: GOING OFF EQUILIBRIUM
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W. Israel, J.M.Stewart, Annals Phys. 118 (1979) 341 & Phys.Lett. A58 (1976) 213
here we use the IS method to construct the Navier-Stokes theory

replacement of the equilibrium currents by the general ones (equilibrium + non-equilibrium corrections)

Sµ = Tµαβα −
1
2
ωαβSµ,αβ − ξNµ +N

µ
eq (44)

Conservations laws, now for total angular momentum J = L + S

∂µNµ = 0, ∂µTµν = 0, ∂µSµ,αβ = T βα − Tαβ (45)

entropy production

∂µSµ = −δNµ∂µξ+ δTµλs ∂µβλ + δTµλa

(
∂µβλ − ωλµ

)
−

1
2
δSµ,αβ∂µωαβ ≥ 0 (46)

the second law of thermodynamics imposes constraints on non-equilibrium currents, they should be proportional to

appropriate “gradients” multiplied by the kinetic coefficients
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Generalized Tolman-Klein conditions define global equilibrium state
R. C. Tolman, Relativity, Thermodynamics and Cosmology (Oxford University Press, London, 1934)
O. Klein, Rev. Mod. Phys. 21 (1949) 531

∂µξ = 0, ∂(µβλ) = 0, ωλµ = ∂[µβλ] = −
1
2

(
∂λβµ − ∂µβλ

)
(47)

The middle equation, ∂λβµ + ∂µβλ = 0, is the Killing equation with a solution of the form

βµ = β
µ
0 + $µνxν , $µν = −$νµ = const, β

µ
0 = const (48)

One possible solution: rigid rotation

L.D. Landau, E.M. Lifshitz , Statistical Physics, Part 1 (Oxford
Butterworth-Heinemann, 1980)
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Zubarev/Becattini framework

general definition of the statistical operator in QFT

e−(E−µ)/T
−→ e−p·β(x)+ξ(x)

−→ ρ̂LEQ =
1
Z

exp

[
−

∫
Σ

dΣµ

(̂
Tµνβν −

1
2
ωλν Ĵµ,λν − ξN̂µ

)]
(49)

Σ is a space-like hypersurface, for example, corresponding to a constant LAB time t , in this case ρ̂LEQ = ρ̂LEQ(t)

in global equilibrium ρ̂LEQ becomes independent of time

$λµ = ∂[µβλ] = −
1
2

(
∂λβµ − ∂µβλ

)
thermal vorticity is constant (50)

in local equilibrium ρ̂LEQ depends on spacetime variables through

thermal vorticity depending on space and time

$λµ(x) = ∂[µβλ](x) = −
1
2

(
∂λβµ(x) − ∂µβλ(x)

)
(51)

thermal shear also depending on space and time

ξλµ(x) = ∂(µβλ)(x) =
1
2

(
∂λβµ(x) + ∂µβλ(x)

)
(52)

definition of Σµ(x)

ρ̂LEQ is used to calculate spin observables
succesful description of the data
F. Becattini, M. Buzzegoli, G. Inghirami, I. Karpenko, and A. Palermo, PRL127 (2021) 27, 272302
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PART 6: SPIN DYNAMICS WITH REALISTIC HYDRODYNAMIC BACKGROUND
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Is there a place for perfect spin hydrodynamics in RHIC?

S. K. Singh, R. Ryblewski, WF, Phys. Rev. C111 (2025) 024907

1 realistic 3D simulation of RHIC performed first, very good description of the rapidity distributions,
transverse-momentum spectra, elliptic flow

early stages, non-equilibrium processes, dissipation, transfer between L and S

late stages, spin approximately conserved, S ≈const

2 initialisation of the perfect spin hydrodynamics at the delayed proper time τs
0

formula motivated by various independent works:
S. Y. F. Liu and Y. Yin, JHEP 07 188
F. Becattini, M. Buzzegoli, and A. Palermo, Phys. Lett. B820 (2021) 136519
M. Buzzegoli, Phys. Rev. C105 (2022) 044907

ωµν(τs
0) = $iso

µν + 4τ̂[µξ
iso
ν]ρ

uρ (53)

$iso
µν = 1

T ∂[νuµ] is the isothermal part of thermal vorticity

ξiso
µν = 1

T ∂(νuµ) represents the isothermal part of the thermal shear tensor ξµν = ∂(νβµ)

τ̂µ = (1, 0, 0, 0) is a fixed timelike vector which in Milne coordinates is normal to the constant-τ hypersurface

3 comparison with the data

Wojciech Florkowski (IF UJ) 13.11.2025 30 / 33



Our numerical results for the component of Λ polarization along the orbital angular momentum direction for different
initial time of spin evolution τs

0 . Experimental data: STAR exp. at BNL, Au+Au collisions at
√

sNN= 200 GeV, c=20–60%
J. Adam et al. (STAR), Phys. Rev. C 98 (2018) 014910
J. Adam et al. (STAR), Phys. Rev. Lett. 123 (2019) 132301
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Our numerical results for longitudinal Λ polarization for different initial time of spin evolution τs
0 . Experimental data: STAR

experiment at BNL, Au+Au collisions at
√

sNN= 200 GeV, c=20–60%
J. Adam et al. (STAR), Phys. Rev. C 98 (2018) 014910
J. Adam et al. (STAR), Phys. Rev. Lett. 123 (2019) 132301
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Conclusions

1. The new formula for the equilibrium Wigner function eliminates, after more than 12
years, the deficiency of the most widely used expression so far. It eventually leads to a
well-defined expression for the polarization magnitude.

2. Our expression is an extension of the basic formula given in the Landau-Lifshitz course.

3. If used to construct macroscopic currents, our equilibrium Wigner function allows us
to obtain consistent thermodynamic relations derived in earlier studies.

4. For small polarization, our approach is consistent with the classical spin treatment
based on the seminal work of Matthison.

5. We are able to verify nonlinear causality and symmetric hyperbolicity of the
equations of motion of spin hydrodynamics constructed with our equilibrium function,
which ensures local well-posedness of the initial value problem and stability of the
theory.

6. The significance of the applicability criterion of the proposed framework is examined.
The arguments are given that it does not constrain the real dynamics in heavy-ion
collisions.

see the next talks by Valeriya Mykhaylova and Zbigniew Drogosz
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