

High sensitivity Radon studies

Review

Florian Jörg florian.joerg@physik.uzh.ch October 3, 2024 - Low Radioactivity Techniques (Kraków)

Why we care about radon...

- ²²²Rn can distribute homogeneously: No fiducialization possible
- Important background for low energy WIMP, $0\nu\beta\beta$ decay and solar and reactor neutrino searches

Why we care about radon...

- ²²²Rn can distribute homogeneously: No fiducialization possible
- Important background for low energy WIMP, $0\nu\beta\beta$ decay and solar and reactor neutrino searches

Why we care about radon...

- ²²²Rn can distribute homogeneously: No fiducialization possible
- Important background for low energy WIMP, $0\nu\beta\beta$ decay and solar and reactor neutrino searches

... and what we can do against it!

- Methods that **prevent** radon from entering the active volume
- Material pre-selection, radon barriers, new detector designs
- Active **removal** of radon that has already entered the detector
- E.g. distillation, adsorption, etc.
- **Rejection** of radon-induced events in the analysis
- ER/NR separation, convection, time coincidence, ...
- ⇒ **Optimal combination needed!**

Radon release mechanism

Emanation by recoil

- $-\alpha$ -decay: $^{226}\text{Ra} \stackrel{4.9 \text{MeV}}{\longrightarrow} {^{222}\text{Rn} + \alpha}$
- 86 keV recoil energy \Rightarrow \sim 14 nm (steel)

Radon release mechanism

Emanation by recoil

- $-\alpha$ -decay: $^{226}\text{Ra} \longrightarrow 2^{22}\text{Rn} + \alpha$
- 86 keV recoil energy \Rightarrow \sim 14 nm (steel)

Emanation by diffusion

$$
\underbrace{\frac{\partial}{\partial t} \eta(x,t) = D \frac{\partial^2}{\partial x^2} \eta(x,t)}_{\text{2nd Fick's law}} - \overbrace{\lambda \cdot \eta(x,t)}^{\text{Decay}}
$$

- $-$ Diffusion constant D depends on material and temperature
- Decay constant λ depends on radon isotope (i.e. $T^{222Rn}_{1/2} \gg T^{220Rn}_{1/2}$)

Radon release mechanism

Emanation by recoil

- $-\alpha$ -decay: $^{226}\text{Ra} \longrightarrow 2^{22}\text{Rn} + \alpha$
- 86 keV recoil energy \Rightarrow \sim 14 nm (steel)

Emanation by diffusion

$$
\underbrace{\frac{\partial}{\partial t} \eta(x,t) = D \frac{\partial^2}{\partial x^2} \eta(x,t)}_{\text{2nd Fick's law}} - \underbrace{\overbrace{\lambda \cdot \eta(x,t)}^{\text{Decay}}}_{\text{Decay}}
$$

- $-$ Diffusion constant D depends on material and temperature
- Decay constant λ depends on radon isotope (i.e. $T^{222Rn}_{1/2} \gg T^{220Rn}_{1/2}$)

 2^{22} Rn \bigcap 226_{Ra}

Which one dominates? Strongly depends on the material, and the type of sample!

- Probes surface impurities, not bulk impurities!
- $-$ Knowing ²²⁶Ra contamination does not tell you ²²² Rn emanation rate (only upper limit).

²²²**Rn measurement**

²²²**Rn measurement (1. Accumulation)**

- 1. Place sample in leak tight container
- 2. Fill container with radon free carrier gas (e.g. N_2 , He, ...)
- 3. Wait for the radon to accumulate

$$
A(t) = A_{eq} \cdot \left(1 - e^{-\lambda_{222Rn} \cdot t}\right)
$$

²²²**Rn measurement (2. Concentration)**

- 1. Transfer emanated radon with carrier gas
- 2. Trap radon in a cold trap (e.g. charcoal) and remove all carrier gas
- 3. Heat the trap up to release the radon
- 4. Transfer the radon atoms to the detector using the gas flow required for the measurement.

- Duration of the transfer typically around half an hour
- Note that this makes this approach unsuitable for measurement of ²²⁰Rn.

²²²**Rn measurement (2. Concentration)**

- 1. Transfer emanated radon with carrier gas
- 2. Trap radon in a cold trap (e.g. charcoal) and remove all carrier gas
- 3. Heat the trap up to release the radon
- 4. Transfer the radon atoms to the detector using the gas flow required for the measurement.

- Duration of the transfer typically around half an hour
- Note that this makes this approach unsuitable for measurement of ²²⁰Rn.

²²²**Rn measurement (2. Concentration)**

- 1. Transfer emanated radon with carrier gas
- 2. Trap radon in a cold trap (e.g. charcoal) and remove all carrier gas
- 3. Heat the trap up to release the radon
- 4. Transfer the radon atoms to the detector using the gas flow required for the measurement.

- Duration of the transfer typically around half an hour
- Note that this makes this approach unsuitable for measurement of ²²⁰Rn.

²²²**Rn measurement (3. Detection)**

top flange

PIN diode

events

 $\overline{5}$

number

- 1. Detection of alpha decays of radon progeny (MeV energies, monoenergetic)
- 2. Detectors include: Electrostatic radon monitors, proportional counters, liquid scintillator detectors, cryogenic alpha spectrometers
- 3. Often a purifier (getter) is needed to maintain the radon detection efficiency
- 4. Activity decreases following the decay of radon in the detector [PhD Thesis S. A. Brünner, Heidelberg \(2017\)](https://doi.org/10.11588/heidok.00023261)

²²²**Rn measurement (3. Detection)**

- 1. Detection of alpha decays of radon progeny (MeV energies, monoenergetic)
- 2. Detectors include: Electrostatic radon monitors, proportional counters, liquid scintillator detectors, cryogenic alpha spectrometers
- 3. Often a purifier (getter) is needed to maintain the radon detection efficiency
- 4. Activity decreases following the decay of radon in the detector

[JINST 19 \(2024\) 04, P04014](https://doi.org/10.1088/1748-0221/19/04/P04014)

Radon screening facilities used by LZ

[Eur.Phys.J.C 80 \(2020\) 11, 1044](https://doi.org/10.1140/epjc/s10052-020-8420-x)

South Dakota School of Mines and Technology

Maryland Alabama

Facility at Boulby Underground Laboratory (UK)

- two 80 liter electrostatic monitors MDA 90%: 40μ Bq
- Cold radon emanation facility $(CREF)$ (MDA 90% < 0.1 mBq).
- Large 200 liter and small 2.7 liter emanation chamber. That can be stabilized at ∼77K.

Radon screening at U. Freiburg (MonXe)

- Hemispheric electrostatic detector (1.2 liter)
- Electropolished emanation vessel (20 liters)
- Good collection and detection efficiency: $(36.3 \pm 0.2 \text{(stat.)} \pm 1.4 \text{(syst.)})\%$
- Minimum detectable activity (MDA) $\sim 60 \mu$ Bq (@ 90% C.L.)

Radon measurement at MPIK (XENONnT)

- $-$ >20 ultralow background miniaturized proportional counters
- Sensitivity $\sim 20 \mu$ Bq
- $-$ Fully automated ²²²Rn concentration system
- $-$ ~ 15 sample vessels (0.1 80 lit.)
- 3 electro-static radon monitors (²²²Rn & ²²⁰Rn)

Cryogenic radon detector (Jagiellonian University)

- Cryosorption of 222 Rn and 220 Rn in front of silicon detector
- Minimum detectable activity: $\sim 20 \mu$ Bq
- Systematic studies of detection efficiency depending on gas pressure and geometry

How to compare? - Reliable calibration sources!

- Proof of concept (2017) $2\times$ 5E11²²⁶Ra ions (\approx 7 Bq) implanted at 30 keV at ISOLDE facility (CERN)
- Ion range distribution (SRIM)
	- $\mu = 7.9$ nm, $\sigma = 2.3$ nm
- **+** Expected emanation fraction due to recoil: 23%
- **+** Mechanically stable

How to compare? - Reliable calibration sources!

- Recoil dominated emanation of 222 R_n \rightarrow Good stability with pressure, temperature, gas-type, etc.
- Emanation from a bare metal surface \rightarrow Low outgassing of impurities

Applicability and future production:

- Valuable samples for radon mitigation studies and detector calibration
- $-$ Study radon emanation from different material types
- Beam time approved for 20 new samples, 10 are already done

Thank you very much!

