

High sensitivity Radon studies

Review

Florian Jörg florian.joerg@physik.uzh.ch October 3, 2024 - Low Radioactivity Techniques (Kraków)

Why we care about radon...

- ²²²Rn can distribute homogeneously: No fiducialization possible
- Important background for low energy WIMP, $0\nu\beta\beta$ decay and solar and reactor neutrino searches

Florian Jörg | High sensitivity Rn studies

Why we care about radon...

- ²²²Rn can distribute homogeneously: No fiducialization possible
- Important background for low energy WIMP, $0\nu\beta\beta$ decay and solar and reactor neutrino searches

Why we care about radon...

- ²²²Rn can distribute homogeneously: No fiducialization possible
- Important background for low energy WIMP, $0\nu\beta\beta$ decay and solar and reactor neutrino searches

... and what we can do against it!

- Methods that **prevent** radon from entering the active volume
- Material pre-selection, radon barriers, new detector designs
- Active **removal** of radon that has already entered the detector
- E.g. distillation, adsorption, etc.
- **Rejection** of radon-induced events in the analysis
- ER/NR separation, convection, time coincidence, ...
- \Rightarrow Optimal combination needed!

Radon release mechanism

Emanation by recoil

- α -decay: ²²⁶Ra $\xrightarrow{4.9 \text{ MeV}}$ ²²²Rn + α
- $\begin{array}{l} \hspace{0.1 cm} 86 \hspace{0.1 cm} \text{keV recoil energy} \\ \Rightarrow \sim 14 \hspace{0.1 cm} \text{nm (steel)} \end{array}$

Radon release mechanism

Emanation by recoil

- α -decay: ²²⁶Ra $\xrightarrow{4.9 \text{ MeV}}$ ²²²Rn + α
- $\begin{array}{l} \hspace{0.1 cm} 86 \hspace{0.1 cm} \text{keV recoil energy} \\ \Rightarrow \sim 14 \hspace{0.1 cm} \text{nm (steel)} \end{array}$

recoil range Bulk material

Emanation by diffusion

$$\underbrace{\frac{\partial}{\partial t} \eta(x,t) = D \frac{\partial^2}{\partial x^2} \eta(x,t)}_{2nd \ \text{Fick's law}} - \overbrace{\lambda \cdot \eta(x,t)}^{\text{Decay}}$$

 Diffusion constant D depends on material and temperature

− Decay constant λ depends on radon isotope (i.e. $T_{1/2}^{222Rn} \gg T_{1/2}^{220Rn}$)

Radon release mechanism

Emanation by recoil

- $\begin{array}{c} \alpha \text{-decay:} \\ \xrightarrow{226} \text{Ra} \xrightarrow{4.9 \text{ MeV}} 222 \text{Rn} + \alpha \end{array}$
- $\begin{array}{l} \hspace{0.1 cm} 86 \hspace{0.1 cm} \text{keV recoil energy} \\ \Rightarrow \sim 14 \hspace{0.1 cm} \text{nm (steel)} \end{array}$

Emanation by diffusion

$$\underbrace{\frac{\partial}{\partial t} \eta(x,t) = D \frac{\partial^2}{\partial x^2} \eta(x,t)}_{\text{2nd Fick's law}} - \overbrace{\lambda \cdot \eta(x,t)}^{\text{Decay}}$$

- Diffusion constant *D* depends on material and temperature
- − Decay constant λ depends on radon isotope (i.e. $T_{1/2}^{222Rn} \gg T_{1/2}^{220Rn}$)

Which one dominates? Strongly depends on the material, and the type of sample!

- Probes surface impurities, not bulk impurities!
- Knowing ²²⁶Ra contamination does not tell you ²²²Rn emanation rate (only upper limit).

²²²Rn measurement

²²²Rn measurement (1. Accumulation)

- 1. Place sample in leak tight container
- 2. Fill container with radon free carrier gas (e.g. $N_{\rm 2},$ He, ...)
- 3. Wait for the radon to accumulate

$$A(t) = A_{eq} \cdot \left(1 - e^{-\lambda_{222Rn} \cdot t}\right)$$

²²²Rn measurement (2. Concentration)

- 1. Transfer emanated radon with carrier gas
- 2. Trap radon in a cold trap (e.g. charcoal) and remove all carrier gas
- 3. Heat the trap up to release the radon
- 4. Transfer the radon atoms to the detector using the gas flow required for the measurement.

- Duration of the transfer typically around half an hour
- Note that this makes this approach unsuitable for measurement of ²²⁰Rn.

²²²Rn measurement (2. Concentration)

- 1. Transfer emanated radon with carrier gas
- 2. Trap radon in a cold trap (e.g. charcoal) and remove all carrier gas
- 3. Heat the trap up to release the radon
- 4. Transfer the radon atoms to the detector using the gas flow required for the measurement.

- Duration of the transfer typically around half an hour
- Note that this makes this approach unsuitable for measurement of ²²⁰Rn.

²²²Rn measurement (2. Concentration)

- 1. Transfer emanated radon with carrier gas
- 2. Trap radon in a cold trap (e.g. charcoal) and remove all carrier gas
- 3. Heat the trap up to release the radon
- 4. Transfer the radon atoms to the detector using the gas flow required for the measurement.

High sensitivity Rn studies

Florian Jörg

- Duration of the transfer typically around half an hour
- Note that this makes this approach unsuitable for measurement of ²²⁰Rn.

²²²Rn measurement (3. Detection)

events

ę

number (

- Detection of alpha decays of radon progeny (MeV energies, monoenergetic)
- 2. Detectors include: Electrostatic radon monitors, proportional counters, liquid scintillator detectors, cryogenic alpha spectrometers
- 3. Often a purifier (getter) is needed to maintain the radon detection efficiency
- 4. Activity decreases following the decay of radon in the detector

PhD Thesis S. A. Brünner, Heidelberg (2017)

²²²Rn measurement (3. Detection)

- 1. Detection of alpha decays of radon progeny (MeV energies, monoenergetic)
- 2. Detectors include: Electrostatic radon monitors, proportional counters, liquid scintillator detectors, cryogenic alpha spectrometers
- 3. Often a purifier (getter) is needed to maintain the radon detection efficiency
- 4. Activity decreases following the decay of radon in the detector

JINST 19 (2024) 04, P04014

lecays detected within 3.0 h

Radon screening facilities used by LZ

Detector	Туре	Chamber vol- umes (L)	Chamber blank rates (mBq)	Transfer eff - ciency (%)	Detector eff - ciency (%)	Cross-calibration (measured/EXO- activity)
SDSM&T	PIN-diode	13 300	0.2 0.2	94 80	25	0.89 ± 0.15 1.11 ± 0.28
Maryland	PIN-diode	4.7	0.2	96	24	1.13 ± 0.19
UCL	PIN-diode	2.6 2.6	0.2 0.4	97 97	30	1.49 ± 0.15
Alabama	Liquid Scint.	2.6 2.6	<0.4	34	36	0.83 ± 0.17

Eur.Phys.J.C 80 (2020) 11, 1044

South Dakota School of Mines and Technology Maryland

Alabama

Facility at Boulby Underground Laboratory (UK)

- two 80 liter electrostatic monitors MDA 90%: 40µBq
- Cold radon emanation facility (CREF) (MDA 90% < 0.1 mBq).
- Large 200 liter and small 2.7 liter emanation chamber. That can be stabilized at ~77K.

Radon screening at U. Freiburg (MonXe)

- Hemispheric electrostatic detector (1.2 liter)
- Electropolished emanation vessel (20 liters)
- $-\,$ Good collection and detection efficiency: (36.3 \pm 0.2(stat.) \pm 1.4(syst.))%
- Minimum detectable activity (MDA) \sim 60 μ Bq (@ 90% C.L.)

Radon measurement at MPIK (XENONnT)

- >20 ultralow background miniaturized proportional counters
- Sensitivity \sim 20 μ Bq
- Fully automated ²²²Rn concentration system
- $-~\sim$ 15 sample vessels (0.1 80 lit.)
- 3 electro-static radon monitors (²²²Rn & ²²⁰Rn)

Cryogenic radon detector (Jagiellonian University)

- Cryosorption of ²²²Rn and ²²⁰Rn in front of silicon detector
- Minimum detectable activity: \sim 20 μ Bq
- Systematic studies of detection efficiency depending on gas pressure and geometry

How to compare? - Reliable calibration sources!

- Proof of concept (2017) $2 \times 5E11^{226}$ Ra ions (\approx 7 Bg) implanted at 30 keV at ISOLDE facility (CERN)
- Ion range distribution (SRIM)
 - $\mu = 7.9 \,\mathrm{nm}, \sigma = 2.3 \,\mathrm{nm}$
- Expected emanation fraction due to recoil: 23%
- Mechanically stable

How to compare? - Reliable calibration sources!

- — Recoil dominated emanation of ²²²Rn → Good stability with pressure, temperature, gas-type, etc.
- Emanation from a bare metal surface
 → Low outgassing of impurities

Applicability and future production:

- Valuable samples for radon mitigation studies and detector calibration
- Study radon emanation from different material types
- Beam time approved for 20 new samples, 10 are already done

Thank you very much!

