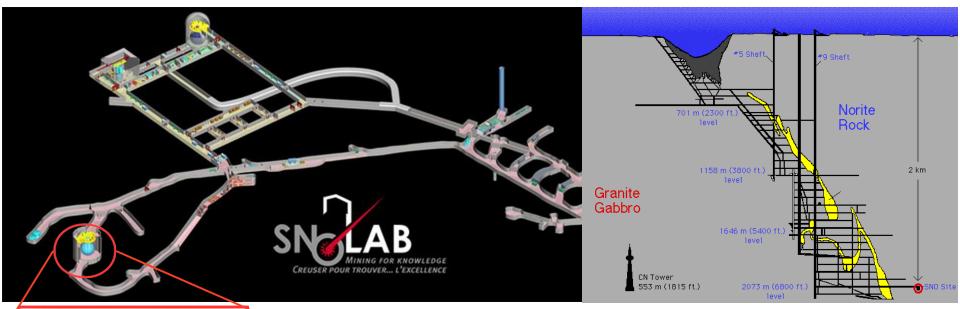


Laurentian University Université Laurentienne


Liquid Scintillator Purification for SNO+

Aleksandra Bialek on behalf of the SNO+ collaboration

Low Radioactivity Techniques Workshop October 1-4, 2024 Uniwersytet Jagielloński, Kraków

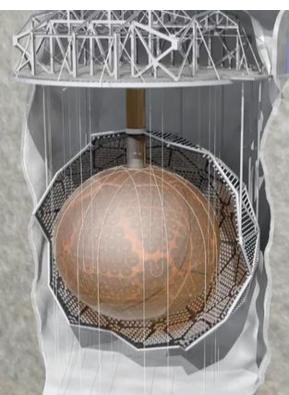
SNO+@SNOLAB

□ SNOLAB – underground laboratory:

- Creighton Mine, Sudbury, Canada
- Deep: 2km, 6000 mwe
 - ~ 70 muons /day in SNO+
- Clean : class 2000 clean room

SNO+ Detector

1984-2007 1 kt Heavy Water D₂O



□ Target Materials:

- Ultra-Pure Water
- High-purity Liquid Scintillator
- Tellurium-loaded Liquid Scintillator

SNQ

2007-present 780 t Liquid Scintillator

SNO+ Program

Water Phase

May 2017-July 2019

Solar Neutrinos

Reactor Antineutrinos

Supernova Neutrinos

Nucleon Decay

Scintillator phase

April 2022 – Present

780 tonnes

Solar Neutrinos

Reactor Antineutrinos

Supernova Neutrinos

Geoneutrinos

Exotic

Partial Fill Phase

March - October 2020

365 tonnes of LAB + 0.6 g/L PPO

Tellurium Phase Deployment in 2025

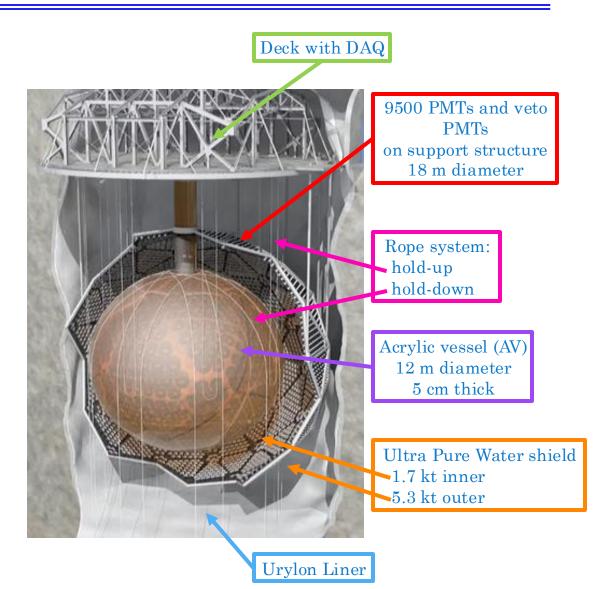
Neutrinoless Double Beta Decay with ¹³⁰Te

Solar Neutrinos

Reactor Antineutrinos

Supernova Neutrinos

Geoneutrinos


Exotic

Szymon Manecki's Talk

SNO+ Detector

- New hold-down netReplace hold-up ropes
- ✓ New Cover Gas
- New Purification Plants:
 Scintillator, TeA, TeDiol
- ✓ Repair and re-install the PMTs
- ✓ Seal the liner in the cavity
- ✓ Upgrade the DAQ
- ✓ New calibration system Internal and External

2021 JINST 16 P08059

SNO+ Detector: Rope System


 New hold-down net Replace hold-up ropes 		Cavity	AV	AV hold-up	AV hold-down
	SNO	UPW 999.7 kg/m ³	D2O 1106 kg/m ³	10 loops	-
	SNO+		LAB 854.7 kg/m ³		10 ropes

Designed to counteract the buoyant force of 1.25 MN

Ropes:

- Tensylon (high-performance polyethylene fiber)
- suitable mechanical properties
- Iower radioactivity than original SNO ropes

Material	⁴⁰ K (ppm)	²³² Th (ppb)	²³⁸ U (ppb)
Vectran:			
Lubricant #1 ^a (JP)	73.42 ± 5.74	0.36 ± 0.16	$\textbf{0.12} \pm \textbf{0.05}$
Lubricant # ^b (JP)	83.67 <u>+</u> 6.53	0.60 ± 0.19	0.11 ± 0.05
F-F (USA)	40.76 ± 4.70	0.40 ± 0.90	$\textbf{7.94} \pm \textbf{0.72}$
F-F: UPW (USA)	33.15 <u>+</u> 4.99	3.44 ± 2.03	0.34 ± 0.43
Tensylon™	$\textbf{0.87} \pm \textbf{0.20}$	$\textbf{0.23} \pm \textbf{0.11}$	0.05 ± 0.03
Tensylon™: UC	0.53 ± 0.20	0.27 ± 0.12	0.74 ± 0.07

<u>Status:</u>

Installed in 2012 and tested to its full capacity

LRT October 1-4, 2024

□ NIM A, 827 (2016), 152-160

SNO+ Detector: Cover Gas

Designed as a sealed system

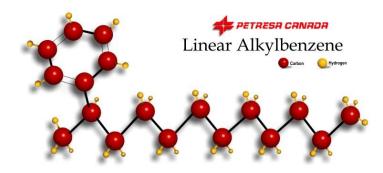
✓ New Cover Gas

- Reduce Rn gas level as compared to SNOLAB air (~125 Bq/m³)
- Balance the pressure swings in the mine
 - \blacklozenge mechanical constrains on the max dP across the vessel
 - Buffer volumes (3 Bags)
 - $\circ\,$ for small external pressure changes
 - Pressure relief system (3 U-traps)
 - $\circ\,$ for instant high-pressure changes

2021, JINST 16 P08059

Status:

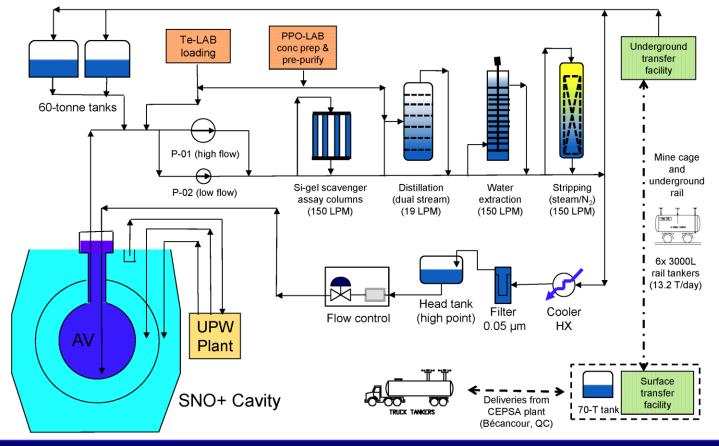
- Commissioned and operational since Sep 2018
- Reduction 1.9x10⁴ in radon concentration
- Constant monitoring with radon monitor since Oct 2018


Search For a New Liquid Scintillator

Developed by SNO+

- □ Solvent: Linear alkylbenzene (LAB)
 - Chemically compatible with acrylic
 - Stable
 - High light yield
 - High purity
 - long attenuation and scattering length
 - Low cost
 - Safe (high flash point 140°C, low toxicity)
 - Low solubility in water
 - Density 0.86 g/cm3
- Primary Fluor: PPO (2.2g/L)
- □ Secondary Fluor: bisMSB (5.4 mg/L)
- Stabilizer: BHT (2.2 mg/L)

Solvent	Density (g cm ⁻³)	Flash point (°C)
Pseudocumene (PC)	0.889	44
Phenylcyclohexane (PCH)	0.950	98
Linear alkylbenzene (LAB)	0.856	143
Di-isopropylnaphthalene (DIN)	0.960	140
Phenyl-o-xylyletane (PXE)	0.985	167
1-Methylnaphthalene (1-MN)	1.020	82
Dodecylbenzene (DCB)	0.870	140


2021, JINST 16 P05009

Purification Methods

- Microfiltration
- Vacuum distillation

- Liquid-Liquid Extraction
- Metal scavengers

N2/UPW Steam stripping

Process System Requirements

- □ Materials: SS316, Teflon, glass, acrylic
- Pressure: 150psi.
- Temperature:
 - 240°C (under boiling point, but above flash point)

□ Surface preparations and cleanliness:

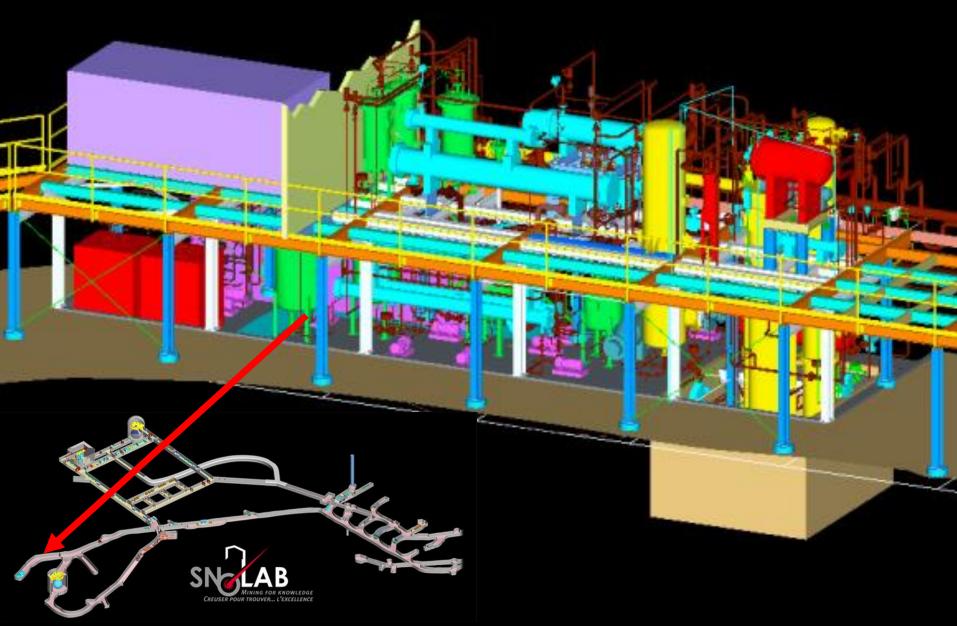
• Electropolished, Passivated and Cleaned to Mil standard 1246 class 50 (LPC).

Leak tightness:

• 10⁻⁹ mbar*L/sec

Pumps, valves and fittings:

- SS electro-polished tubing, GTAW orbital weld
- VCR fittings and Metal gaskets (Helicoflex)
- O-rings Teflon Encapsulated Viton (TEV)
- Diaphragm or bellows valves
- Mag-drive pumps

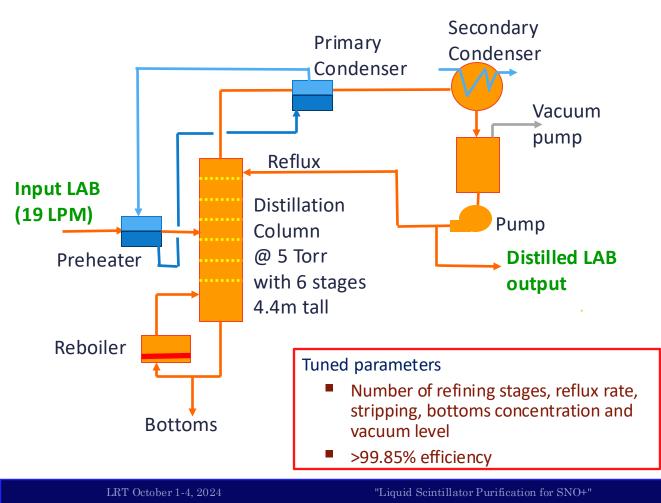


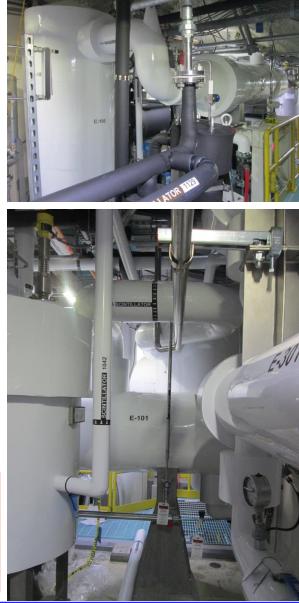
Process System Challenges

- Build a small refinery in the mine
- Constrained space in any direction
- Bring underground all the tall columns and vessels
- Construction to be done in a very strict cleanroom environment
- □ High purification efficiency
- High-vacuum tightness (Rn ingress)
- Only selected materials for purity and compatibility
- Constrains on the electrical power and cooling capacity
- Additional fire protection
- □ High LN2 demand

Purification Plant @ **SNOLAB**

Process System Challenges: Construction

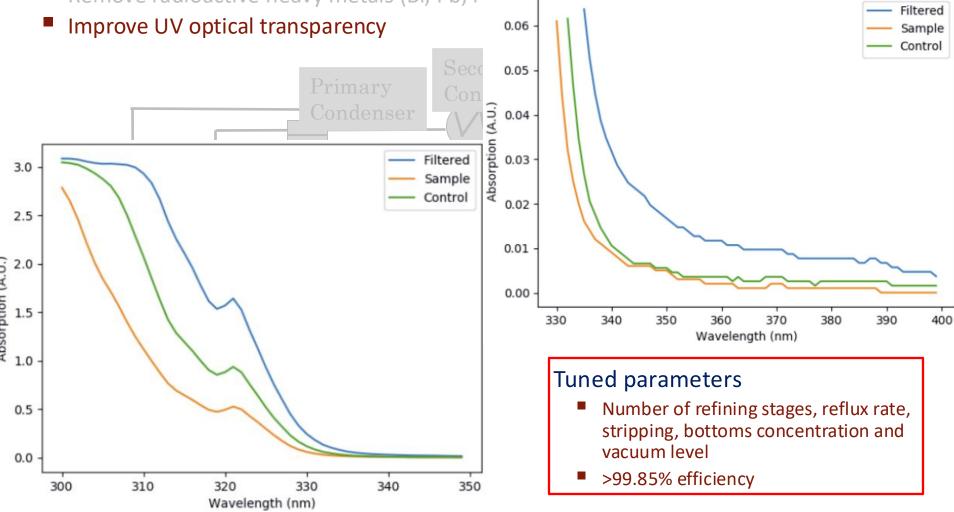




LAB Distillation

Continuous multistage vacuum distillation

- Initial purification of LAB
- Remove radioactive heavy metals (Bi, Pb, Po, K, Ra, Th)
- Improve UV optical transparency

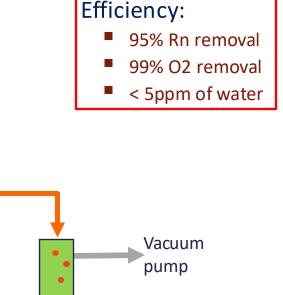


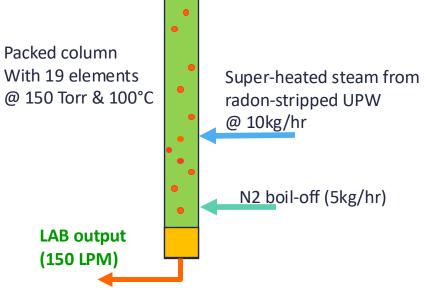
A.Bialek

LAB Distillation

Continuous multistage vacuum distillation

- Initial purification of LAB
- Remove radioactive heavy metals (Bi, Pb, P




LRT October 1-4, 2024

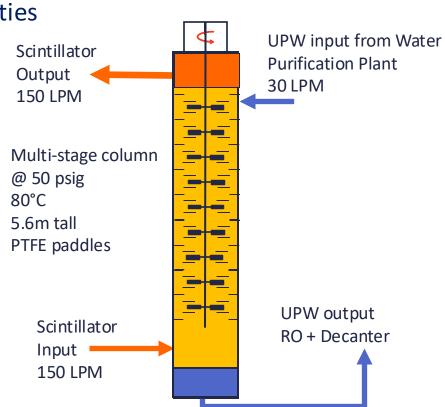
Gas Stripping

- N2/UPW Steam stripping
 - Remove noble gases Rn, Kr, Ar and O₂
 - Removes residual water
- Well understood process:
 - Nitrogen as a continues phase with upward flow
 - LAB as dispersed phase introduced from top

LRT October 1-4, 2024

"Liquid Scintillator Purification for SNO+"

LAB input (150 LPM)


Liquid-Liquid Extraction

□ Process with immiscible phases: Water and LAB:

- LAB continuous phase flowing upward
- UPW dispersed phase flowing downward
- Based on differences in solubility for chemical impurities
 - Remove ionic radioactive metals U, Th, Ra, K, Pb
- □ Not effective in removing optical impurities

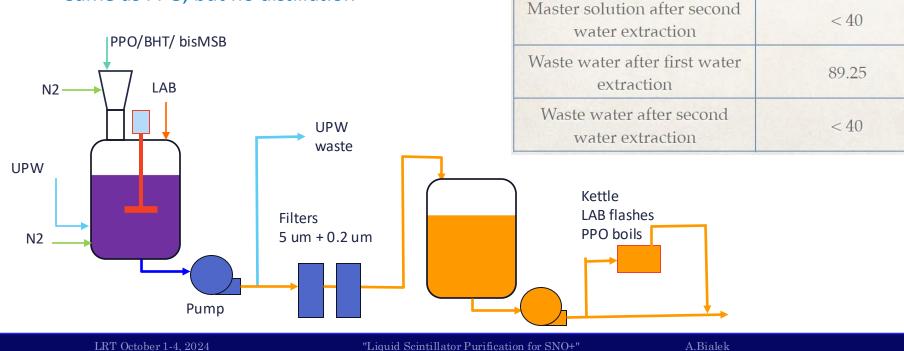
LRT October 1-4, 2024

Efficiency:

87% removal 212Pb

98% removal 224Ra

-


Purification Of The Other Components

PPO:

- dissolved in LAB in concentrated solution at 120 g/L
- PPO solution:
 - ♦ N2 sparged to reduce radon
 - ♦ 2x water extraction to reduce potassium contamination
 - Filtered and distilled in a flash kettle
 - Added to recirculated LAB and N2 stripped

□ BHT and bisMSB

• Same as PPO, but no distillation

Sample

Master solution after first

water extraction

K content (ppb)

137.45

LAB Delivery Sequence

CEPSA plant (Bécancour, QC) High quality LAB transported in 20T tanker trucks

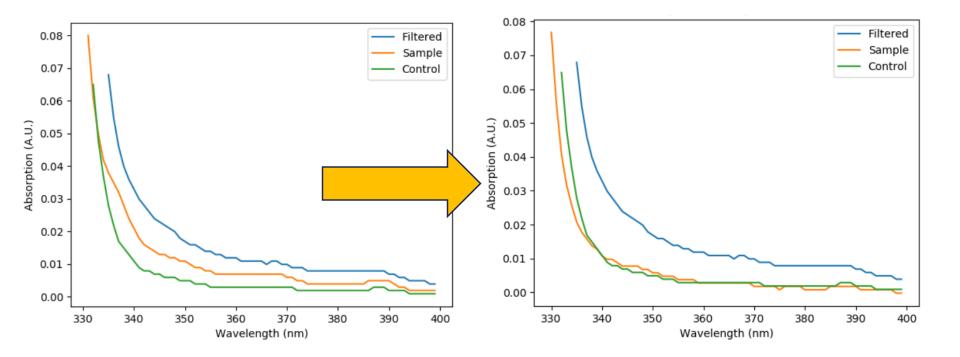
SNOLAB: Surface Transfer Facility (STF) (70-tonne storage tank)

SNOLAB STF:

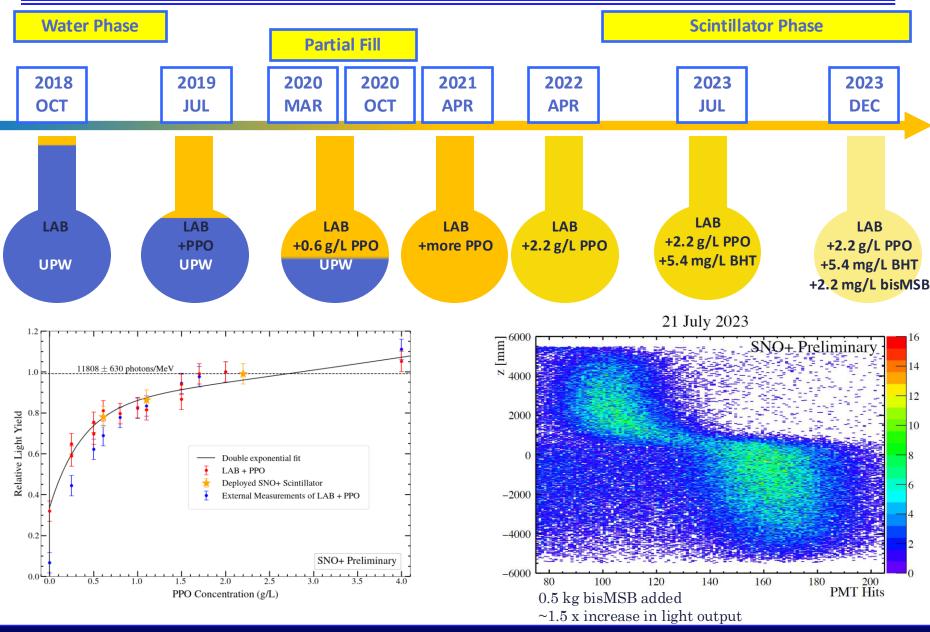
Transferred to 6 x 2.2T steel rail cars with N2 cover Gas

SNOLAB Underground Transfer Facility (UTF): Transferred to 2x 60T storage tanks

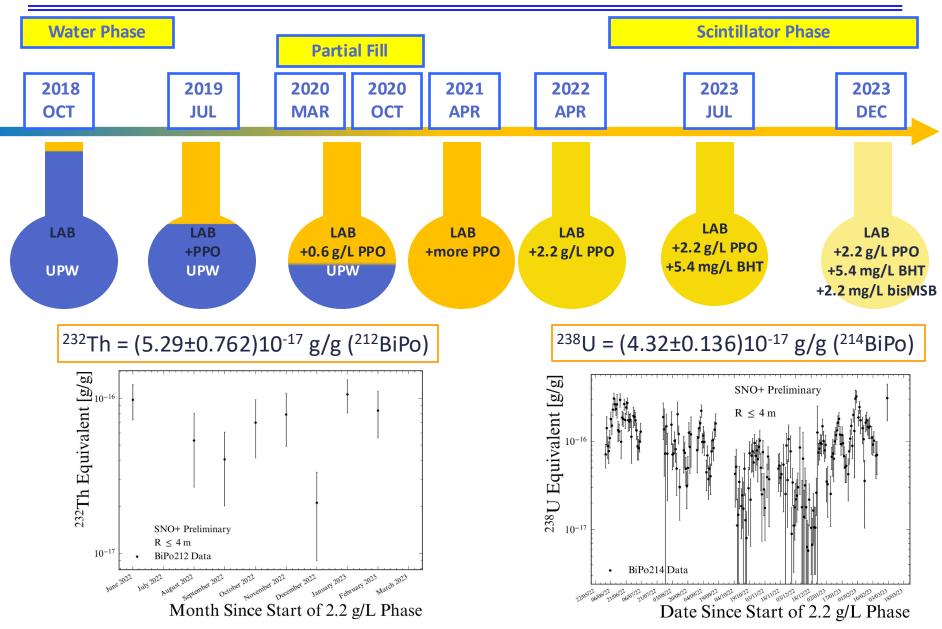
Scintillator Purification Plant (SPP): Distillation @ 19 LPM and N2 stripping



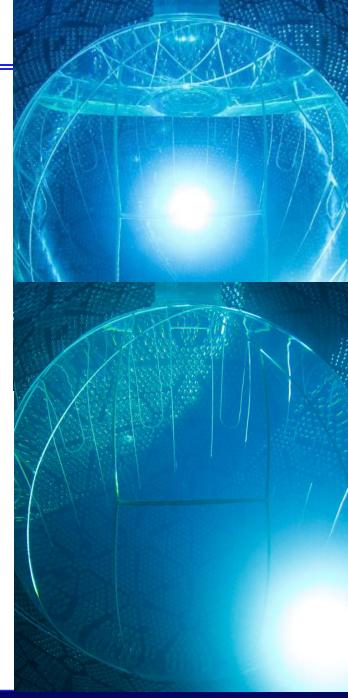
QA/QC Requirements


Physical properties

- Density, turbidity, temperature, humidity
- Optical properties
 - UV-Vis spectra, UV-Vis transparency
 - Light Yield


- Very strict approval procedures for filling the detector
- Constant monitoring of the UV-Vis spectra
 - hourly analysis during operations

Scintillator Cocktail



Scintillator Cocktail

Summary

- SNO+ has successfully filled the detector with Scintillator
 - LAB +2.2 g/L PPO +5.4 mg/L BHT +2.2 mg/L bisMSB
- Process Plant delivers ultra-pure product
 - We reached 10⁻¹⁷ g/g in both U and Th
 - Which is our requirements for the scintillator phase
 - It is well below the minimum requirement for the tellurium phase
- SNO+ is taking a very good quality data while preparing for the Tellurium phase

LRT October 1-4, 2024

"Liquid Scintillator Purification for SNO+"

Thank you

Dziękuję SNO+, 2024