

Measuring Underground Neutrons with the High-Efficiency Neutron Spectrometry Array (HENSA): Current Status and Future Prospects

Ariel Tarifeño-Saldivia

Instituto de Física Corpuscular CSIC – Universidad de Valencia Spain atarisal@ific.uv.es

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

OUTLINE

- Bonner's Spheres spectrometer
- The HENSA project
- Previous activities underground
- HENSA @ LSC
- HENSA @ LNGS
- Remarks and future perspective

Neutron detection based on moderated thermal sensors

Detector response depends on:

- Moderator material: HDPE (H2O, graphite, etc)
 - scattering cross section
- Moderator geometry:
 - size or "effective thickness"
- Neutron energy:
 - → Simple moderator: meV 20 MeV
 - Moderator+multipliers: meV GeV's
- Thermal sensors: 3He, BF3, 6Lil(Eu) scintillator
 - Cross section

Detection reaction: ³ $He + n \rightarrow {}^{3}H + p \quad Q=0.764 \text{ MeV}$

High Thermal cross section: **5330 barns!!!**

Table 13-1. Neutron and gamma-ray interaction probabilities in typical gas proportional counters and scintillators

· 2월 4일 14일 24일 - 2	Interaction Probability			
Thermal Detectors	Thermal Neutron	1-MeV Gamma Ray		
³ He (2.5 cm diam, 4 atm)	0.77	0.0001		
Ar (2.5 cm diam, 2 atm)	0.0	0.0005		
BF ₃ (5.0 cm diam, 0.66 atm)	0.29	0.0006		
Al tube wall (0.8 mm)	0.0	0.014		
	Interaction Probability			
Fast Detectors	1-MeV Neutron	1-MeV Gamma Ray		
⁴ He (5.0 cm diam, 18 atm)	0.01	0.001		
Al tube wall (0.8 mm)	0.0	0.014		
Scintillator (5.0 cm thick)	0.78	0.26		
		20220		

*Extracted from Neutron Detectors, T. W. Crane and M. P. Baker

CSI

Energía (eV)

- These neutron counters are gaseous ionization detectors that use 3He as converting gas.
- Due to the **high thermal capture cross section**, 3He filled counters have a high neutron sensitivity.
- For non-thermal neutrons, the high efficiency can be exploited by using moderators.
- In addition, the low gamma-ray sensitivity makes these detectors very attractive for neutron spectroscopy (Bonner spheres) and dosimetry.

The Bonner Spheres neutron Spectrometer (BSS)

- Bonner spheres Spectrometers (BSS) are among the most known and widespread technique for neutron spectrometry.
- Material:
 - Moderator: HDPE (other options: paraffin wax, water,...)
 - Neutron filters: Cd foils
 - Extended energy range BSS use neutron multipliers (Pb, Cu, W, ...)
- Thermal sensor:
 - Active systems: 3He tubes (BF3 tubes, 6Lil(Eu) scintillators)
 - Passive systems: Activation foils (Au, Dy,), TLD-pairs 700/600

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1-4 Oct 2024, Kraków, Poland

The Bonner Spheres neutron Spectrometer (BSS)

- Number of detectors: Typically 5 up to 16 spheres → *ill-posed linear inverse problem*!
 - Nasty connection with unfolding!
- **Detector responses:** calculated by using general purpose Monte Carlo codes. Requires:
 - Satisfactory geometrical model of the detector
 - High Precision nuclear data for neutron transport
 - Validation
- **Energy spectrum reconstruction (unfolding):** requires
 - → A-priori information (again MC calcs!)
 - An unfolding algorithm

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

Monte Carlo (MC)

response matrix (R)

calculated

Response (cm²)

High efficiency BSS

The High Efficiency Neutron Spectrometry Array (HENSA)

- HENSA is based on the Bonner Spheres Principle. Energy sensitivity from thermal to 10 GeV.
- Research lines: neutron background in underground facilities, cosmic rays neutrons and space weather, environmental radioactivity...

Configuration for cosmic-

A. Tarifeño-Saldivia

VNIVERSITAT DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

HENSA spectral sensitivity

Standard extended Bonner Spheres

A. Quero, PhD Thesis (UGR)

HENSA neutron response is ~5-15 times larger than standard Bonner Spheres systems in the energy range from thermal up to 10 GeV.

The higher neutron response means:

- Improved precision in low radioactivity or underground facilities.
- Temporal response in the scale of ten of minutes to hours for detecting fluctuations of cosmic-ray neutron flux at ground.

Currently two spectrometer designs: underground facilities & Cosmic-ray neutrons (HENSA++)

www.hensaproject.org

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

HENSA versions

Neutrons in underground physics

- Underground research: astroparticle physics, nuclear astrophysics experiments, biological and geological studies.
- Neutron source: (alpha,n) reactions, spontaneous fission and muon contribution.
- Neutron are a limiting factor in many rare event experiments (e.g. neutrino searches, neutrino-less double-beta decay experiments and dark matter searches) and underground nuclear astrophysics experiments.
- Most of the measurements in underground facilities are based either on thermal neutron counters or scintillators sensitive to fast neutrons. Fully spectrometric measurements are very scarce!
- HENSA is currently operating at LSC (Spain) and LNGS (Italy)

Underground lab	Depth (m.w.e)	Thermal neutron flux $(cm^{-2} s^{-1})$	Fast neutron flux $(cm^{-2} s^{-1})$	Neutron
CPL	1000	No data	$(3.00 \pm 0.02 \pm 0.05) \times 10^{-5}$	at diffe
Yang Yang	2000	$(2.42 \pm 0.22) \times 10^{-5}$	8×10 ⁻⁷	undergr
Soudan	2090	$(0.7 \pm 0.08 \pm 0.08) \times 10^{-6}$	No data	faciliti
Canfranc	2450	$(1.13 \pm 0.02) \times 10^{-6}$	$(0.66 \pm 0.01) \times 10^{-6}$	Compila
Boulby	2800	No data	$(1.72 \pm 0.61 \pm 0.38) \times 10^{-6}$	from Hu
Gran Sasso	3600	$(1.08 \pm 0.02) \times 10^{-6}$	$(0.23 \pm 0.07) \times 10^{-6}$	NIMA 8
Modane	4800	$(1.6 \pm 0.1) \times 10^{-6}$	$(4.0 \pm 1.0) \times 10^{-6}$	
CJPL-I	6720	$(4.00 \pm 0.08) \times 10^{-6}$	No data	(2017) 3
CJPL-I	6720	$(7.03 \pm 1.81) \times 10^{-6}$	$(3.63 \pm 2.77) \times 10^{-6}$	

MC simulation for LSC Hall A N. Mont-Geli (PhD, UPC)

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

Neutron flux modulation in underground facilities

ISSN 1063-7796, Physics of Particles and Nuclei, 2017, Vol. 48, No. 1, pp. 34-37. © Pleiades Publishing, Ltd., 2017.

The Study of the Thermal Neutron Flux in the Deep Underground Laboratory DULB-4900^{1, 2}

V. V. Alekseenko^a, Yu. M. Gavrilyuk^a, A. M. Gangapshev^a, *, A. M. Gezhaev^a,
D. D. Dzhappuev^a, V. V. Kazalov^a, A. U. Kudzhaev^a, V. V. Kuzminov^a, S. I. Panasenko^b,
S. S. Ratkevich^b, D. A. Tekueva^a, and S. P. Yakimenko^a

^aInstitute for Nuclear Research, RAS, Moscow, Russia ^bKharkiv National University, Kharkiv, Ukraine *e-mail: gangapsh@list.ru Large volume detectors (6LiF + ZnS(Ag))

Themal flux: ~ 10⁻⁹ – 10⁻⁶ MeV

Abstract—We report on the study of thermal neutron flux using monitors based on mixture of ZnS(Ag) and LiF enriched with a lithium-6 isotope at the deep underground laboratory DULB-4900 at the Baksan Neutrino Observatory. An annual modulation of thermal neutron flux in DULB-4900 is observed. Experimental evidences were obtained of correlation between the long-term thermal neutron flux variations and the absolute humidity of the air in laboratory. The amplitude of the modulation exceed 5% of total neutron flux.

DOI: 10.1134/S1063779616060022

No fully spectrometric studies yet!

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

A physical case for underground neutrons: ANAIS – 112 experiment

Goal

ANAIS (<u>Annual modulation with Nal(Tl) scintillators</u>) intends to provide a model independent test of the signal reported by DAMA/LIBRA, using the same target and technique at the Canfranc Underground Laboratory (Spain)

Experimental goals

- Energy threshold at 1 keV_{ee}
- Background level below 10 keV_{ee} at a few cpd/kg/keV_{ee}
- Very stable operation conditions

For ANAIS is relevant the measurements of:

I) total neutron flux and spectral distribution at LSC (Hall B).

II) Possible long-term variations of the neutron flux. Required in order to set a limit on the corresponding effect in ANAIS background and annual modulation analysis.

Courtesy ANAIS team

HENSA/ANAIS collaboration at LSC

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

Previous activities: shallow-underground laboratory Felsenkeller

Two measurement campaigns (2014 & 2018)

- System of nine tunnels built for Felsenkeller brewery in 1856-59
- 5 MV Pelletron ion accelerator for ¹H, ⁴He, ¹²C beams
- Combination of µ attenuation by 45 m rock and active µ veto

PHYSICAL REVIEW D 101, 123027 (2020)

Neutron flux and spectrum in the Dresden Felsenkeller underground facility studied by moderated ³He counters

M. Grieger,^{1,2} T. Hensel,^{1,2} J. Agramunt,³ D. Bemmerero,^{1,*} D. Degering,⁴ I. Dillmann,⁵ L. M. Fraile,⁶ D. Jordan,³ U. Köster,⁷ M. Marta,⁵ S. E. Müller,¹ T. Szücs,¹ J. L. Taín,³ and K. Zuber²

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

HENSA @ LSC: Experiment at the Canfranc Underground Laboratory

New measurement at Hall A @ LSC: - Data acquisition from Oct 2019 until March 2021. Using previous version of HENSA for LSC.

S. Orrigo et al. Eur. Phys. J. C 82, 814 (2022).Final results, draft in preparation.

- Continuous monitoring based on a reduced HENSA setup (4 dets), PhD thesis J. Plaza (CIEMAT).

New measurement at **Hall B** @ LSC: In collaboration with **ANAIS** experiment (**dark matter search**):

- Measurements started in **March 2021**, Planned until **2025.** Using optimized version for underground (HENSA-V2022) **PhD thesis N. Mont, UPC**

- **Collaboration with ANAIS-112**: assessment of the neutron flux long-term evolution and background component affecting the ANAIS-112 experiment (*Marisa Sarsa/María Martínez, UNIZAR*)

- **Development of a dedicated facility** for characterization of internal radiactivity in proportional neutron counters.

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1-4 Oct 2024, Kraków, Poland

HENSA @ LSC: Hall A

Astroparticle Physics 42 (2013) 1-6

SERVICES	Contents lists available at SciVerse ScienceDir	rect	ATTENAN
20	Astroparticle Physics	2013	
ELSEVIER	journal homepage: www.elsevier.com/locate	astropart	1

Measurement of the neutron background at the Canfranc Underground Laboratory LSC

Hall A

A. Tarifeño-Saldivia

VNIVERSITAT DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

HENSA @ LSC: Hall A

2019 Campaign Detector HENSA-V2019

 $\Phi_{HallA} = (1.48 \pm 0.02) \times 10^{-5} cm^{-1} s^{-1}$

Thermal flux estimated independently from bare tube + Cd-lined measurement.

Reconstruction constrained by the thermal flux

Table 1. Integral values of the neutron flux obtained in different energy regions from deconvolution algorithms codes BAYES and CHIMEM. Neutron flux in units of 10⁻⁶ n/cm²/s

NEUTRON FLUX	Thermal	Epithermal	Fast	Total	
Energy range [MeV]	10-10 - 3.2 - 10-7	3.2.10-7-0.1	0.1-20	10 ⁻¹⁰ - 20	
Φ _n (BAYES)	3.4(2)	5.96(8)	5.45(8)	14.8(2)	
Φ _n (CHIMEM)	3.4(2)	5.94(8)	5.42(9)	14.8(2)	

HENSA @ LSC: Hall A

Neutron source in hall A

Monte Carlo FLUKA (v. 4.3.2) calculations used to estimate the neutron flux in Canfranc.

— Sum

SF concrete

SF rock

 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}

 (α,n) reactions.

Contributions:

Concrete: 94%

Muons: 0.03%

Rock: 6%

- Spontaneous fission.
- Muon-induced neutrons

E d4/dE (cm⁻² s⁻¹)

10

10⁻⁵

 10^{-6}

10⁻⁷

10⁻⁸

10⁻⁹

10⁻¹⁰

<mark>ե և </mark>ուսու

10⁻¹⁰

PhD thesis N. Mont, UPC

— (α,n) concrete

— (α,n) rock

(µ,n)

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

10²

E (MeV)

10

HENSA @ LSC: Hall B

N. Mont-Geli et al 2021, J. Phys.: Conf. Ser. 2156, 01223 N. Mont-Geli et al 2023, Proceedings of Science 441, 312

Long-term measurement in hall B

PhD thesis N. Mont, UPC

Two setups: HENSA-v2019 (hall B, February 2022 – August 2022). HENSA-v2022 (hall B, since August 2022) – Better spectral resolution

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

19

S

Long-term evolution of the neutron flux at the LSC-Hall B (Phase 3)

PhD thesis N. Mont, UPC

HENSA @ LSC: Hall B

A. Quero, UGR

HENSA @ LSC: Neutron monitor setup

J. Plaza, PhD thesis, CIEMAT

- Division of the flux in three components.
- Design of polyethylene moderators to modify the response of ³He detectors.
- Maximize detector response to a particular component.
- Minimization of sensitivity to the other components.
- Small changes in count rate in one detector, directly proportional to changes in its flux range.
- Expected sensitivity ~4% variations of the flux.

CSIC

HENSA @ LSC: alpha background in neutron counters

Need of a low neutron background facility for characterizing neutron counters!

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

102

10

10

Counts

Detector test station at LSC

Shielding station for characterization of alphabackground in neutron counters

- Based on HDPE moderator (50x50x80cm3) + Cd filter (0.5 mm thickness).
- 48 positions for 1" counters, up to 70 cm length (can be adapted to other diameters).
- More than two orders of magnitude thermal flux attenuation factor

VNIVERSITAT Low Radioactivity Techniques (LRT2024)

Detector test station at LSC

- In operation at LSC since Sep 2023.
- A first batch of detectors already characterized.

CSIC

Characterization of a second batch of detectors is ongoing.

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

Counts

HENSA @ LNGS: Experiment at INFN Gran Sasso National Laboratory

Status of the neutron data at LNGS

Work	Hall	Technique
Belli (1989)	A	BF3 counters + 7 variable size moderators (Spec.)
Aleskan (1989)	A	Li-6 scintillator (> 3 MeV)
Arneodo (1999)	С	Proton recoil scintillation detector (> 1 MeV)
Belloti (1985)	В	3He counters, bare + 1 paraffin (thermal and fast)
Debicki (2009)	-	3He bare counters (thermal)
Cribier (1995)	A	CaNO3 radiochemical detector (> 2.5 MeV)
Rindi (1988)	-	3He counters, bare + paraffin + bare and cd
Best (2016)	Interferometer tunnel	3He bare counters (thermal)
Debicki (2018)	(same 2009)	3He counters + long counter for fast neutrons
Bruno (2019)	A (LVD)	Liquid scintillators (above 10 MeV)
Bertoni (2023)	С	Bubble chamber (> 1MeV)

VNIVERSITAT Low Radioactivity Techniques (LRT2024)

HENSA @ LNGS: Experiment at INFN Gran Sasso National Laboratory

- Detector HENSA-V2022 (8 atm)
- Measurement at Hall A @ LNGS has started in April 2024.
- Foreseen activities up to 2026.

Collaborators:

Matthias Laubenstein, Chiara Ghiano, Roberto Cerroni (Special Techniques for detection of rare events, INFN)

Goals:

1) Determination of the neutron flux in a wide energy range (thermal -20 MeV) in Hall A, B & C + new STELLA facility.

2) Assessment of potential modulation of the neutron background.

HENSA @ LNGS: Hall A

- Setup assembled in hall A from 17 20 April 2024.
- Data acquisition from April 20th up to mid June 2024.
- Data analysis is on-going.

HENSA @ LNGS: STELLA

Courtesy of M. Laubenstein

VNIVERSITAT DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

HENSA @ LNGS: STELLA

HENSA setup installed inside STELLA (hall B)

Data acquisition in progress, it started by the end of July.

VNIVERSITAT DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

HENSA @ LNGS: STELLA

Preliminary analysis of the counting rates inside STELLA@LNGS

Detector ID	Neutron rate/(10 ^{-₄} cps)	% error
1	0.102	54.7%
2	0.145	36.7%
3	0.105	63.2%
4	0.190	31.5%
5	0.334	18.2%
7	0.012	428.9%
9	0.019	273.5%
12	0.055	96.7%
13	0.017	301.9%
14	0.095	57.8%

Counting time used to extract the rates at LNGS: 49.79 days (from July 26th to August 25th).

- We are reaching the limit of sensitivity inside STELLA.
- Counting uncertainties are fully dominated by alpha-background subtraction
- Rough estimation: neutron flux in STELLA aprox. 10 times lower than Hall A
- STELLA is a good case for low-background 3He detectors!

- HENSA is able to provide valuable information about the neutron flux and its temporal evolution in underground laboratories.
- A study of the neutron flux, using the same instrument design, in underground facilities is ongoing (Felsenkeller-Germany, LSC-Spain, LNGS-Italy).
- Current activities:

LSC:

- Long-term study in Hall B to be finished next year.
- Monitoring task using reduced setup will continue supported by LSC. LNGS:
- Data taking at the new STELLA facility will continue until Nov. 2024.
- Next measurement will be performed in Hall B (to be confirmed).
- Long-term characterization study will be started next year.
- By 2026, an additional HENSA spectrometer would be available to be installed in other underground facility (potential interest?)

Thanks!

PEOPLE

- Instituto de Física Corpuscular (IFIC), CSIC-UV, Spain A. Tarifeño-Sadivia, J.L. Tain, S.E.A. Orrigo, B. Rubio, E. Nácher.
- Institute of Energy Technologies (UPC) F. Calviño, N. Mont i Geli, A. Casanovas, G. Cortés, A. De Blas, R. García, M. Pallàs, B. Brusasco.
- Universidad Complutense de Madrid (UCM) L.M. Fraile, V. Martínez Nouvillas
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
- D. Bemmerer, M. Grieger
- TRIUMF
- I. Dillmann
- **HENSA** collaboration at LSC
- CIEMAT D. Cano-ott, T. Martínez, J. Plaza del Olmo

 Centro de Astropartículas y Física de Altas Energías M. Martínez, M.L. Sarsa, A. Ortiz de Solórzano

HENSA collaboration for cosmic-rays & space weather

 Universidad de Granada A. Lallena, A. Ouero

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Centro de Astropartículas y ísica de Altas Energías Universidad Zaragoza

www.hensaproject.org

VNIVERSITAT Low Radioactivity Techniques (LRT2024) DÖVALÈNCIA 1–4 Oct 2024, Kraków, Poland

BACKUP SLIDES

34

Physics of cosmic rays and space weather

NOAA/NASA forecast for Solar Cycle 25. Maximum solar activity expected for July, 2025 (+/- 8 months). Solar minimum between Cycles 24 and 25 was observed around Dec. 2019 (+/- 6 months).

Neutron background anti-correlation with solar cycle. Cosmic Ray flux from the Climax Neutron Monitor and rescaled Sunspot Number.

Reference data from Neutron Monitors (www.nmdb.eu)

See poster by F. López-Usquiano (CCHEN)!

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics DÖVALÈNCIA and Applications / June 17-21, 2024 / Mexico city

Secondary neutrons by cosmic-rays

Figure 3. Global grid of vertical geomagnetic cutoff rigidities (GV) calculated from charged particle trajectory simulations in the IGRF field for 2008.

Martens et al. Space Weather 11 (2013) 603-635.

Secondary neutrons produced by cosmic rays depends mainly on:

- Solar cycle.
- Geomagnetic cutoff rigidity.
- Altitude.
- Peninsular spanish territory covers a range of cosmic rays vertical cutoff rigidity (Rc) values from 5 GV to 9 GV. In Ceuta and Melilla, Rcvalues are 9.15 GV and 9.6 GV, respectively. In Canary Islands Rc is ~11.7 GV.
- Thus, the whole spanish territory covers a relatively ample range of Rc-values compared to other larger countries (for instance USA with 1.5 GV < Rc < 4.7 GV).

Most of the calculations models are based on data taken in US ~15 years ago! (Gordon et al. IEEE Trans. Nucl. Sci. 51:6 (2004) 3427-3434)

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics DÖVALÈNCIA and Applications / June 17-21, 2024 / Mexico city

Mapping cosmic-ray induced neutron background in Spain with **HENSA**

HENSA-CR @ 2020 UPC / IFIC / UCM / HZDR

Spain is a good lab for cosmicray neutrons in pandemic times

(2020, solar cycle #25)

Cosmic ray induced neutron background

- + Cosmic ray physics and space weather
- + Environmental radiation dosimetry
- + Single-event upsets in microelectronics

www.hensaproject.org

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics DÖVALÈNCIA and Applications / June 17-21, 2024 / Mexico city

HENSA

High Efficiency Neutron Spectrometry Array

HENSA campaign 2020: July-August, October

- 9 weeks of field campaign
- 4000 km in the route
- 9 different sites in Spain
- From sea level up to 2850 m
- Rc: 5.4-8.9 GV
 - (complementary data to Gordon+2004)

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics DÖVALÈNCIA and Applications / June 17-21, 2024 / Mexico city

- Confirmed structure and flux magnitude with HENSA
- Confirmed effect of higher sensitivity of HENSA with respect to conventional BSS.
- Over 2000 m altitude, relative uncertainty in count rates at 1h time window is ~2% or less.

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics DÖVALÈNCIA and Applications / June 17-21, 2024 / Mexico city

HENSA++: dedicated to CR applications

- High efficiency spectrometer for space weather applications: •
- Array of 16 detectors (3He, 4 atm, 60 cm AL) for measurements of cosmic-ray neutrons.
- Sensitivity from thermal neutrons up to 10 GeV.
- Focus on monitoring solar activity and environmental radioactivity.
- System assembled and **commissioning during 2024** (detector array, electronics and auxiliary systems).
- Final deployment for first experimental run planned during 2024 at the Observatorio Astrofísico de Javalambre (A. Quero, PhD Thesis).

Optimization of responses for HENSA++

HENSA++ proposal design

HENSA++ Optimized version

+ Intensive MC calculations have been performed.

CSIC

+ Explored hundreds of possible detector configurations.

+ Optimization based on improving the resolving power of the array & tradeoff with technical viability (construction & weight).

MC simulations by the Geant4 Particle application ParticleCounter. Counter

A. Quero, PhD thesis, UGR (Granada)

Tarifeño-Saldivia

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics **D**ÖVALÈNCIA and Applications / June 17-21, 2024 / Mexico city

Final solution: resolving power

A. Quero, PhD thesis, UGR (Granada)

Comparison of the resolving power moments

LogE	Mean(vInit)	Mean(vOpt)	SD(vOpt)/SD(vInit)-1
-8	-7.72	-7.69	-44.20%
-7	-6.76	-6.86	- <mark>51.11</mark> %
-6	-5.76	-5.89	-20.37%
-5	-4.93	-4.86	-24.11%
-4	-3.93	-3.98	-4.65%
-3	-3.00	-2.98	-8.27%
-2	-2.07	-2.08	-2.13%
-1	-1.12	-1.09	2.56%
0	-0.08	-0.09	-1.71%
1	0.91	0.94	-2.15%
2	1.43	1.72	-38.90%
3	2.71	2.73	-39.72%

www.elsevier.com/loc

ELSEVIER Nuclear Instruments and Methods in Physics Research A 480 (2002) 690-695

Resolving power of a multisphere neutron spectrometer Marcel Reginatto*

$$\langle \phi \rangle_{E_0} = \int A(E_0, E) \phi(E) dE$$

Final version will use 60 cm counters at 4, 8 and a small one (30 cm) at 20 atm.

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics D&VALENCIA and Applications / June 17-21, 2024 / Mexico city

Acceptance criteria for solutions

Null hypothesis:

$$H_0: \ \{C_i^{unfold}\}_{i=1}^n \sim \{C_i^{true}\}_{i=1}^n$$

Set a Confidence Interval for the chi-square statistic (Ex: 95%)

$$\chi^2 = \frac{1}{n} \sum_{i=1}^n \left(\frac{C_i^{input} - C_i^{output}}{\sigma_i^{input}} \right)^2$$

If the chi-square value of the unfolding is in the CI, Ho × can't be rejected so the solution is accepted

Methodology of POU

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics DÖVALÈNCIA and Applications / June 17-21, 2024 / Mexico city

Treatment of the solutions

- ➤ For each energy bin, we'll obtain a set of solutions [\$\phi_i\$]_{i=1}^n\$ that constitute a distribution of fluence.
- ➤ We want to give a final spectrum with its uncertainty, so:
 - The central value selected is the median of the distribution
 - The uncertainty is given by a Confidence Interval of 1σ (68%)

- The same process is employed for the integral values of the fluence and doses in the desired regions.
- With the code, we can calculate: space of solutions, chi-square distribution, covariance matrix, distribution of solutions, chi-square maps for the parameters...

Chi-squared Analysis for POU - A Quero-Ballesteros - 12/12/2023

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics DÖVALENCIA and Applications / June 17-21, 2024 / Mexico city

Energy spectrum reconstruction: algorithms

- **Iterative procedures**: usually black-magic recipes!
- **Stochastic methods**: Monte Carlo, genetic algorithms, ...
- Regularisation: add constraints to enforce smoothness
- Least-squares adjustment
- Bayesian parameter estimation: requires an analytical model for fitting
- Maximum entropy principle: justifiable from information theory consistent treatment of prior information and uncertainties
- Machine learning... •

Most of this methods require a-priori information that is retrieved from MC calculations

Overview of spectral unfolding techniques and uncertainty estimation

M. Reginatto'

Prockatory-Technotry Residences (FTR): Residentity 188, Warnschweig 18116, Gereure

ARTICLE INFO	A II S T R A C T
Awde Anney	The first part of this attuck provides a countse survey of some of the mathematical methods that have
Becolved 15 December 2000	been proposed for neutron spectrum multiAlug. The sam as to give a polagogical anticidentiant in the
Recolved in revised farm	subject without george mits a defaulted instrument of ischnical sources. The second part of this attuck
8 Jane 2010	structures the evolution of successful spectra derived surge unishing referingane (and any equatities
Accepted 9 Jane 2010	compared from three spectra, e.g., bacters and denore) will be subject to unconstantise and it is inspectra.
Arysenik	 to portide estimates of these uncertainties. This is not straightforward, this is part to the special cole
Uskilleg	played by the pure information. It is shown that an approach using Reporting parameter estimation can
Newma gestrozenty	overcome these difficulties.

1. Introduction

The aim of this paper is twofold. In the first part, I provide a concise survey of some of the approaches that have been used to usfold measurements in neutron spectroeverty. The emphasis is on conceptual issues rather than numerical procedures; I, therefore, concentrate on methods of unfolding and do not discuss the many computer codes that have been written to implement these different methods. The estimation of uncertainties is an important part of data analysis, and in the second part of this paper I discuss how this can be done in the context of unfolding procedures using Bayesian methoda.

To formulate the problem of unfolding, it will be useful to have a particular example in mind. Consider a measurement carried out with a scintillation detector. The pulse height spectrum (PHS) measured by the detector is related to the differential energy spectrum $\Phi_{E}(E)$ by the linear equations

 $N_{\rm E} + e_{\rm B} = \int R_{\rm e}(E) \Phi_{\rm F}(E) dE$

where N_k is the number of counts in channel k (k = 1, ..., n and n isthe number of channels in the PHS). R₂ (E) is the detector response of channel k to particles of energy E, and e₁ is a term which accounts for effects that are not described by the model of the measurement (e.g., statistical fluctuations in the number of counts, discrepancies between N_k and $(R_k(E)\Phi_k(E)dE)$ due to deviations of $R_k(E)$ from the true value of the response, etc.). The value of rk is not known

1358-4407/E - ion from matter = 2010 Disense Ltd. All lights unarrowl. 4:8:10:00183 ratema 2010.00 00

a priori, but it is expected to be of the same order of magnitude as the estimated uncertainty n_k that is assigned to the value N_k of channel k. For computational purposes, it is convenient to consider the discrete version of equation (1).

$$N_k + v_k = \sum_i R_{ki} \Phi_i$$
, G

where k_{kl} are the elements of the response matrix and ϕ_l the components of the fluence vector (1 = 1, ..., m and m is the number of hins used to describe the discretized neutron energy spectrum)

in general, the shape of the PHS will not match the shape of the particle spectrum. This is illustrated in Fig. 1, which shows the energy spectrum of neutrons produced at the PTB accelerator by the reaction $d + d \rightarrow {}^{3}He + n$, together with the PHS measured by an NE213 spectrometer (Reginatto and Zimbal, 2008). This does not present serious difficulties for the data analysis. As a matter of fact, an experienced experimentalist can often describe the main features to be expected of $\Phi_{\mathcal{C}}(E)$ by simply looking at the shape of the PHS. However, to get reliable quantitative results it is of course necessary to carry out a rightrous analysis of the PHS data, and this does require some care.

It should be emphasized that a measurement of this type is an indirect measurement: the fluence vector \$\$ is not measured directly, it has to be estimated using equation (2). This is not straightforward. Furthermore, the solution of equation (2) is not unique, since there are always more unknown than known quantities: there are n - munknown mantifies, the e1 and d1, and only a knows quantities, the N_b.

it should be clear from these introductory remarks that unfolding should not be approached as a purely mathematical problem. To get a solution, one needs to introduce additional assumptions that

M. Reginatto, Rad. Meas. 45 (2010) 1323-1329

111

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics D&VALENCIA and Applications / June 17-21, 2024 / Mexico city

^{*} Tel: +49 538 592 (521: Ee: +40 53) 592 stell J-mail address: Marcel RegistationFurth de

Energy spectrum reconstruction: trained users

Fig. 2: Irradiation scenarios: a) medical LINAC (2 measurement points); b) workplace; c) calibration facility; d) skyshine

Results of the EURADOS international comparison exercise on neutron spectra unfolding in Bonner spheres spectrometry

J.M. Gómez-Ros^{1,*}, R. Bedogni², C. Domingo³, J.S. Eakins⁴, N. Roberts⁵, R.J. Tanner⁴

⁴ CIEMAT, Av. Complutense; 28040, Madrid, Spain

² INFN-LNF, Via E. Fermi n. 40, 00044 Frascati (Rome), Italy

3 UAB, Physics Department, GRRI, 08193 Bellaterra, Spain

4 United Kingdom Health Security Agency (UKHSA), Chilton, Didcot, Oxon OX11 0RQ, United Kingdom

1 NPL, Hampton Road, Teddington, Muldlesex TW11 0LW, United Kingdom

Rad. Meas. 153 (2022) 106755

Table 1 Summary of participants unfolded codes, solved scenarios and pre-information method.

participant	unfolding method	LINAC	workplace	calibration room	skyshine	pre-information
a	B-UNCLE	x	x	x	x	not clearly indicated
b	FRUIT	x	x	x	x	choice of parametric model
с	FRUIT	x	x	x	x	choice of parametric model
d	FRUIT	x	x	x	x	missing information
e	GRUPINT, ANGELO, ZOTT99	x	x	x	х	MCNP6
f	UMG 3.3	x		x		MCNP6
g	UMG 3.3	x				default spectrum from literature
h	UMG 3.3	x	x	x	x	MCNPX 2.5
i	UMG 3.3		x	x	x	MCNP6
j	UMG package: MXD_FC33		x	x		MCNP6
k	MAXED	х	x	x	х	problem dependent
1	GRAVEL	x	x	x	x	problem dependent
m	MXD_FC33 and IQU_FC33	x	х	х	х	problem dependent
n	MAXED	x	х	x	x	MCNP5
0	MAXED / UMG			x		MCNP5
р	MAXED 2000			x		not clearly indicated
q	MSITER / MIEKE		x	x		MCNP5
r	WinBUGS	x	x	x	x	choice of parametric model
s	basic Tykhonov method	x	x	x	x	none
t	self-made	x	x	x	x	none
u	self-made			x		none

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics DÖVALÈNCIA and Applications / June 17-21, 2024 / Mexico city A. Tarifeño-Saldivia

47

Energy spectrum reconstruction: trained users

Fig. 3: Participants unfolded spectra (in colour) compared with the reference spectra for: a1) LINAC scenario, point 1 (at the entrance of the maze); a2) LINAC, point 2 (1 m from the isocentre); b) workplace; c) calibration facility; d) skyshine.

VNIVERSITAT XIV Latin American Symposium on Nuclear Physics D&VALÈNCIA and Applications / June 17-21, 2024 / Mexico city