Tellurium purification and deployment for the SNO+ Experiment

Szymon Manecki, SNOLAB Research Scientist, LRT, October 2nd, 2024

Introduction

SNO+ Physics

Water Phase (current)

PRD 99, 032008 (2019) PRD 105 112012 (2022)

- Best limits on invisible modes of nucleon decay
- Measurement of the 8B solar neutrino flux in SNO+ with very low backgrounds
 PRD 99, 012012 (2019)
- Highest efficiency (~50%) for neutron detection in a water Cherenkov detector
 PRC 102, 014002 (2020)
- Detection of antineutrinos from distant reactors using only pure water
 PRL 130, 091801 (2023)

Scintillator Phase (current)

- Demonstrating event-by-event reconstruction of the direction of recoil electrons (from solar neutrinos) in a liquid scintillator – this result was also an achievement that hasn't been done before
- Being only the second detector to make measurements of the neutrino oscillation parameter Δm_21² using antineutrinos from nuclear reactors, an important verification of the previous measurement

Tellurium Phase (upcoming)

- Developing methods to load tellurium into organic liquid scintillator
 NIM, 1051, 168204 (2023)
- Developing techniques to purify telluric acid

NIM. A. 795:132-139 (2015)

Double Beta Decay

- Are neutrinos their own anti-particles?
- $2\nu\beta\beta$ (Dirac) (A, Z) → (A, Z + 2) + 2e- + 2ve ~ 10^{18} - 10^{21} years
- $ov\beta\beta$ (Majorana) (A, Z) \rightarrow (A, Z + 2) + 2e-> 10²⁵ years
- We measure:

$$\frac{1}{T_{1/2}} = G g_A^4 \mathcal{M}^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
Nuclear matrix element
Phase space factor

Double Beta Decay

- Are neutrinos their own anti-particles?
- $2\nu\beta\beta$ (Dirac) (A, Z) → (A, Z + 2) + 2e- + 2νe ~ 10^{18} - 10^{21} years
- $ov\beta\beta$ (Majorana) (A, Z) \rightarrow (A, Z + 2) + 2e-> 10²⁵ years
- We measure:

Double Beta Decay

Milan ′24 ο**ν**ββ: https://agenda.infn.it/event/37867/sessions/29923/#20240618

Double Beta Decay

LEGEND-200

- 200 kg of ^{enr}Ge HPGe TPC's
 - $T_{1/2}^{0v}$ lower limits (90% frequentist C.L.)

Observed	Sensitivity
> 1.9 · 10 ²⁶ yr	$2.8 \cdot 10^{26} \text{ yr}$

CUORE

750 kgTeO₂ cryogenic calorimeters

Half-life limit: $T_{1/2}^{0\nu} > 3.8 \times 10^{25}$ yr (90% C.I.)

- KamLAND-Zen
 - 800 kg ^{enr}Xe scintillator based detector

Combined T^{0v}_{1/2} > 3.8 × 10²⁶ yr

11111+

Te Scintillator

- 78oT Linear Alkylbenzene (LAB)
 + 2 g/L PPO (Primary Fluor)
 + 2 mg/L bisMSB (WS)
 + 6 mg/L BHT (Stb)
- Tellurium Butanediol (TeDiol) 0.5% Te in LAB
- DDA (stabilizing amine) 0.2% in LAB

A Method to LoadTellurium in Liquid Scintillator for the Study of Neutrinoless Double Beta Decay NIM, 1051, 168204 (2023)

CH₃

Te Systems

TeA

TeDiol

Te Reagents

 LAB-soluble TeDiol complexes are formed in condensation and further oligomerization reactions of Telluric Acid with 1,2-Butanediol

- TeA purification (~8 tonnes)
 - Test Batch operations completed
- 1,2-Butanediol distillation (~14 tonnes)
 - Using very similar parameters to LAB
- DDA distillation (~2 tonnes)
 - U/Th target at ~10⁻¹⁵g/g (expected reduction factor of 1000 from the assayed level has been easily reached with spiked distillation)
 - Expected reduction factors for Co/Na have been achieved, but clean handling postdistillation is going to be important

 $H_{2}O$ $H_{2}O$ H

 $H_{3}C \qquad O \qquad CH_{3} \qquad (...)$

OH

TeA Purification

- The purification technique relies on solubility of TeA in water based on pH
 - Te(OH)₆ \Leftrightarrow Te(OH)₅O⁻ + H⁺

in-soluble

soluble

- Insoluble contamination
 - Dissolve in water, and filter
- Soluble contamination
 - Force TeA to recrystallize by adding Nitric Acid, let it precipitate out, and drain the "dirty" liquid

Isotope	$t_{exp} = 1 \text{ yr}$	1000
22 NT	15900	and the second
Na	15309	- 10
²⁰ Al	0.048	
^{42}K	565	
^{44}Sc	102	SARA
^{46}Sc	43568	1
56 Co	2629	Contraction of
58 Co	25194	120000
60 Co	6906	VI
68 Ga	37343	H-
82 Rb	18047	No.
84 Rb	11850	
⁸⁸ Y	390620	
^{90}Y	823	
102 Rh	276189	
102m Rh	133848	1.4
106 Rh	1534	
110m Ag	69643	1 1 1
110 Ag	939	
^{124}Sb	3101138	1
$^{126m}\mathrm{Sb}$	240	
^{126}Sb	358996	

Pilot-plant Free purification factor due to underground cooldown

Target (r.f. 10³): ²³⁸U: 1.3x10⁻¹⁵ g/g ²³²Th: 5x10⁻¹⁶g/g

Expected reduction for cosmogenics by: 10⁵-10⁶

TeA Plant Flow Diagram

TeA Plant Flow Diagram

TeA Plant Flow Diagram

- Safety (Process Checklist and Monitoring)
 - Transport and handling of nitric acid and telluric acid
 - Sampling
- Process (Plant and Performance QA)
 - Mechanical, Electrical, Instrumentation
 - Yields and efficiencies
- Physics (Process Purification QA)
 - Purifications factor and ICP-MS analysis

- Nitric acid shipping and logistics
- TeA loading into the plant
- Nitric and telluric acid sampling

- Nitric acid shipping and logistics
- TeA loading into the plant
- Nitric and telluric acid sampling

- Nitric acid shipping and logistics
- TeA loading into the plant
- Nitric and telluric acid sampling

- Nitric acid shipping and logistics
- TeA loading into the plant
- Nitric and telluric acid sampling
- Process systems

- Safe Reagent Handling Underground
 - Redissolved TeA sample after first stages of nitric acid recrystallization will be analyzed with ICP-MS soon
 - We've determined that our TeA is much cleaner than what we've been assuming so far (U and Th at the level of a few ppt from two different batches/drums)
 - Alternative nitric acid supply also demonstrated to be better than expected: ~5x10⁻¹⁵ gU/g and ~6x10⁻¹⁶ gTh/g
 - Ultimately the purification factor is determined by the amount of residual nitric acid in the TeA crystal which we just demonstrated to be satisfactory

- Purification of the DDA will be carried out using Wiped Film Distillation
 - Very efficient method for separating and purifying liquids in chemical processes
 - Particularly useful for thermally sensitive materials with high boiling points.
 - DDA assay
 - High Purity Ge (HPGe) detector at SNOLAB
 - ²³⁸U = 0.20 ppb
 - ²³²Th = 0.82 ppb
 - ⁴⁰K < 1.88 ppm
 - Neutron Activation Analysis
 - Na < 0.1 ppm
 - Br < 30 ppm (cosmogenic activation)
 - ¹⁴C/¹²C to confirm its non-biogenic origin
 - Accelerator Mass Spectrometry at uOttawa:
 - Sample #1: ~ 10⁻¹⁵
 - Sample #2: ~10⁻¹⁶

Underground delivery within 1 week to avoid potential cosmogenic activation

- Expected reduction factors
 - >1000 for U/Th (40k achieved)
 - >10 for Na/Co (15 for Na and 50 for Co achieved)
- Limited contact with S. Steel
 - All process lines made of Teflon
 - Only 'brief contact' with SS at the distillation plant

- Expected reduction factors
 - >1000 for U/Th (40k achieved)
 - >10 for Na/Co (15 for Na and 50 for Co achieved)
- Limited contact with S. Steel
 - All process lines made of Teflon
 - Only 'brief contact' with SS at the distillation plant

- Expected reduction factors
 - >1000 for U/Th (40k achieved)
 - >10 for Na/Co (15 for Na and 50 for Co achieved)

Limited contact with S. Steel

- All process lines made of Teflon
- Only 'brief contact' with SS at the distillation plant

TeDiol Synthesis

 Tellurium synthesis tests have been carried out on a smaller scale, between 8 grams and 1.6 kilograms

 Full, 200-kg scale batch is planned soon

Thank You

Backup

Te Scintillator

 LAB-soluble TeDiol complexes are formed in condensation and further oligomerization reactions of Telluric Acid with 1,2-Butanediol

- TeA purification
 - The target 8 tonnes of TeA
 have already been cooling down underground
 (50% for > 2 years and 50% for < 2 years)

TeA Fabrication & Cleaning

- All wet process lines and vessels constructed with plastic to suppress metals leaching
 - Polypropylene vessels designed and delivered by SeaStar
 - On-site contractors trained in clean PFA piping installation

TeA Fabrication & Cleaning

SeaStar process vessel leaching (with warm acid solution)

Soak 1 Soak 2 Soak 3 (2 days) (4 days) (4 days) RXT TRXT RXT TRXT TRXT RXT U 0.2 < 0.05 < 0.05 < 0.05 < 0.05 1 Th 1 1.1 < 0.1 < 0.1 5 < 0.1 Ca 2700 380 180 2000 <20 <20 Fe 5600 5000 170 17 220 37

Compare: goal of 0.1 ppt U and <0.05ppt Th in purified TeA. Other measured metals (relevant for cosmogenics) lower than Ca and Fe, <0.1 ppb goal.

Vessels meet our purity requirements! Further cleaning/leaching with nitric acid after installation will provide additional safety factor.

Results from ICP-MS assay of leachate (ppt)

TeDiol Fabrication & Cleaning

- PFA (PerFluoroAlkoxy) lined FRP (fiberglass-reinforced polymer) tanks for main process vessels
 - Flash chamber, batch tank & product tank
- PFA in-line heater
- PFA condenser
- PFA Centrifugal Pumps
- Nitrogen sparging system
- Stainless steel condensate tank

SNO+Te Phase

With 0.5% Te loading T^{ov}_{1/2} > 2.1 x 10²⁶ yrs m_{ββ} > 45 meV_(IBM-2)

Cosmogenic

2νββ

 (α, n)

External y

 $^{8}B \nu ES$

Internal U chain

SNO+Te Phase

m_{ββ} > 45 meV_(IBM-2)

Notes

- SNOLAB
- Intro to DBD (like in the MI talk)
- UG systems
 - Ask if Aleksandra will cover PPO, bisMSB and BHT
 - Cover the why (stability) and how (water-extr.)
- UG TeA and TeDiol Plants
 - Te Purification concept and TeDiol synthesis
- TeA Test Batch
 - Nitric handling, yields, process
- DDA Still
 - Why we need it on surface
 - Metal spike via exposure to metal powder