

Developments, features and perspectives of crystal scintillators of the Cs₂MCl₆ family (M = Hf or Zr) to search for rare processes

<u>A. Leoncini ^{1,2}</u>, P. Belli ^{1,2}, R. Bernabei ^{1,2}, F. Cappella ^{3,4}, V. Caracciolo ^{1,2}, R. Cerulli ^{1,2}, A. Incicchitti ^{3,4}, M. Laubestein ⁵, V. Merlo ^{1,2}, S. Nagorny ⁶, V. Nahorna ⁷, S. Nisi ⁵, P. Wang ⁷

- ¹ Dipartimento di Fisica, Università di Roma 'Tor Vergata', I-00133 Rome, Italy
- ² INFN Sezione di Roma Tor Vergata, I-00133 Rome, Italy
- ³ INFN Sezione Roma, I-00185 Rome, Italy
- ⁴ Dipartimento di Fisica, Università di Roma 'La Sapienza', I-00185 Rome, Italy
- ⁵ INFN Laboratori Nazionali del Gran Sasso, 67100 Assergi (AQ), Italy
- ⁶ Department of Physics, Queen's University, Kingston, ON K7L 3N6, Canada
- ⁷ Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada

Interest in studying the 2β and rare α decay

- **♦ 0ν2β**, if observed, could open a new window beyond the SM → L violated ($\Delta L = 2$) → <u>massive</u> Majorana neutrino.
- ★ Current sensitivity for 2v2β⁻ decay: T_{1/2} ~ 10¹⁸ 10²⁴ yr; for 0v2β⁻: T_{1/2} ~ 10²⁴ - 10²⁶ yr.
- To test, e.g., calculations of different nuclear shapes and the decay modes that involve the vector and axialvector g_A weak effective coupling constants.

- Details on the nuclear structure, the nuclear levels and the properties of nuclei.
- ♦ **Rare** α decay: T_{1/2} > 10¹⁴ yr.
- Essential also for nuclear and particle astrophysics studies (α-capture reactions, β-delayed fission, nucleosynthesis).

Interest in studying the 2β and rare α decay

∻2ν2β de	Requirements: high radiopurity (e.g. \leq 0.1 ppb),	ture the
conserve	high-sensitivity (energy threshold \sim keV), good detector	ture, the
◊ 0ν2β , if	performances (efficiency > 90%), well known technology,	of nuclei.
$SM \rightarrow L v$	stability over the running conditions (variation < 1%),	
Current	acceptable cost (1,000 - 10,000 Eur/kg), safety, many	particle
for 0ν2β ⁻	isotopes and decay modes explorable etc.	reactions,

***** To test, e.g., calculations of unerent nuclear snapes

and the decay modes that involve the vector and axial-

 $0\nu 2\beta^-: {}^A_Z X \to {}^A_{Z+2}Y + 2e^-$

vector g_A weak effective coupling constants.

 $\alpha: {}^{A}_{Z}X \to {}^{A}_{Z-2}Y + {}^{4}_{2}He$

Some general properties	Cs ₂ HfCl ₆	Cs ₂ ZrCl ₆
Effective atomic number	58	46.6
Density (g/cm ³)	3.9	3.4
Melting point (°C)	820	850
Crystal structure	Cubic	Cubic
Emission maximum (nm)	400 - 430	450 - 470
Scintillation time constants (µs)	0.4; 5.1; 15.2 *	0.4; 2.7; 12.5*
Light Yield	up to 30000 photons/MeV**	up to 41000 photons/MeV**
Linearity of the energy response	Excellent, down to 100 keV	Excellent, down to 100 keV
Energy resolution (FWHM, %) @ 662 keV	3.2 - 3.7***	3.5 - 7.0***
Pulse-shape discrimination ability	Excellent	Excellent
Mass fraction of isotope of interest (%)	27	16

Cs₂HfCl₆ (CHC) and Cs₂ZrCl₆ (CZC) crystal scintillators

* for alpha events at room temperature (Dalton Trans. 2022, 51, 6944-6954)

** for gamma quanta at room temperature
*** depends on the crystal quality, surface
treatment and readout system

Production and growth of Cs₂HfCl₆ crystals

Produced at Queen's University, Canada

CHC (6.90 g)

- ✓ CsCl (99.998%) + **HfCl**₄ (99.8%) as starting materials.
- ✓ HfCl₄ powder subjected to a three-fold purification process.
- ✓ Grown by Bridgman technique: growth at 5° C/cm, at 1 cm/day).

CHC (16.87 g)

- ✓ CsCl (99.9%) + **HfCl₄** (98%) as starting materials.
- ✓ HfCl₄ powder subjected to a three-stage sublimation process.
- ✓ Grown by vertical Bridgman technique: «fast» growth 25° C/cm, at 1.46 mm/hours) + «slow» growth (20° C/cm, at 0.5 mm/hour).

Ø21.20(5)×12.8(1) mm

Then polished with 1200 grit sandpaper, mineral oil as lubricant, cleaned by toluene.

Cs₂HfCl₆ chemical contaminants

measured by ICP-MS analysis.

The limits are at 68% C.L.	Nuclide	Concentration (ppb)		
		CHC		
		6.90 g [1]	Element	Concentration (ppb)
	¹⁴⁴ Nd	<2.4		CHC
	¹⁴⁷ Sm	0.6(1)		16.87 g [2]
	¹⁴⁸ Sm	0.4(1)	U	0.73(22)
	¹⁵¹ Eu	19(7)	Th	0.16(5)
	¹⁵² Gd	<0.02	Pb	440(130)
	¹⁸⁰ W	<0.4	Sm	2(1)
	¹⁸⁴ Os	<0.003	К	1900(570)
	¹⁸⁶ Os	<0.25		
	¹⁹⁰ Pt	<0.02		
[1] V. Caracciolo et al., NPA 1002 (2020) 121941.	²⁰⁹ Bi	<2		

[2] P. Belli et al. 2024, to

appear

Cs₂HfCl₆ cry radiopurit

		Chain	Nuclide	Activity (I	mBq/kg)	
			CHC			
CS_2HICI_6C	rystal			6.90 g [1]	16.87 g [2]	
radiopurity		²³⁸ U	²²⁶ Ra	<23	<13	
measured wi	th the		²³⁴ Th	<0.80	<1200	
ultra-low back	ground		^{234m} Pa	<0.48	<18	Notural
HP-Ge γ spectr	ometers acility at	²³⁵ U	²³⁵ U	<14	<18	Natural
LNGS over ~ 70	0 hours.	²³² Th	²²⁸ Ra	<12	<13	
			²²⁸ Th	<3.6	<17	
			²⁰² Pb	<9.1	-	
			¹⁹⁰ Pt	<20	-	
			¹⁸¹ Hf	<11	-	
	Only		¹³⁷ Cs	0.78(8)×10 ³	<10	> Artificial
	transportation!		¹³⁴ Cs	79(8)	37(4)	Cosmogenic
T _{1/2} ≈2 ye			¹³² Cs	<15		activation
			⁶⁰ Co	<25	-	
[1] V. Caracciolo et al., (2020) 121941.	NPA 1002		⁴⁴ Ti	10(4)	-	
[2] P. Belli et al. 2024, to		⁴⁰ K	0.4(1)×10 ³	<240	> Natural	

7

V. Caracciolo et al. NPA 1002 (2020) 121941

First low-background measurement of CHC at LNGS

- CHC crystal (6.90(1) \checkmark g) coupled lowradioactivity PMT (Hamamatsu R6233MOD) placed above the end-cap of the ultra-low background HP-Ge CAEN DT5720B \checkmark digitizer 250 MSamples/s; 2848 h data taking **STELLA** facility of the LNGS
- (1) CHC crystal scintillator
- (2) PMT
- (3) HP-Ge detector
- (4) Teflon ring

- (5) Pb, 2.5 cm (6) HP Cu (7) Pb, 25 cm
- (8) Plexiglas box

Energy (keV)

V. Caracciolo et al. NPA 1002 (2020) 121941

Fit of the α spectrum of CHC crystal and results

In 2848 h of data taking, the measured 553(23) α events (expected number = 1100 counts) rule out **I** the old result of 2.0(4)x10¹⁵ yr (*T.P. Kohman, Phys. Rev. 121, 1758, 1961*) for $T_{1/2}$ of α decay of ¹⁷⁴Hf.

$$T_{1/2} = (7.0 \pm 1.2) \times 10^{16} \, \mathrm{yr}$$

P. Belli *et al* 2024, to appear

New measurement of the α decay of ¹⁷⁴Hf to the g.s. of ¹⁷⁴Yb

10

$\text{O}\nu\text{2}\beta$ searches with non-trivial candidates

There are more than 60 potentially 2β-active isotopes, but only few of them are currently under consideration

⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe are facing issues with an internal and environmental gamma background, while profiting from well-developed crystal production and material purification technologies.

⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd – only ¹⁰⁰Mo is under consideration due to a well-developed detector material and its high radiopurity.

⁴⁸Ca, ⁹⁶Zr, ¹⁵⁰Nd are the less studied due to combination of unfavorable experimental conditions specific to each of them.

- $Q_{\beta\beta}$ (⁹⁶Zr) = 3.35 MeV
- Favorable from a theoretical point of view $T_{1/2} \sim (Q_{\beta\beta})^5$
- Reasonable natural i.a. (2.8%)
- New advanced detector material (Cs₂ZrCl₆)
- Crystal production under full control
- Extensive studies of the detector properties

Production and growth of Cs₂ZrCl₆ crystals

Produced at Queen's University, Canada

\varnothing 21.5×60 mm, about 60 g

CZC cone (10.63 g) & cylinder (23.95 g)

- ✓ CsCl (99.9%) + ZrCl₄ (99.9%) as starting materials
- ZrCl₄ powder subjected to a two-stage sublimation process
- ✓ Grown by vertical Bridgman technique: «fast» growth (28° C/cm, at 1.5 mm/hour) + «slow» growth (25° C/cm, at 0.5 mm/hour)

CZC -1 (19.21 g), CZC - 2 (19.86 g), CZC - 3 (20.43 g)

- ✓ CsCl (99.9%) + ZrCl₄ (99.9%) & CsCl (99.999%) + ZrCl₄ (99.99%) as starting materials
- \checkmark ZrCl₄ powders subjected to a two-stage sublimation process
- ✓ Grown by vertical Bridgman technique: «fast» growth 20° C/cm, at 24 mm/day) + «slow» growth (25° C/cm, at 12 mm/day).
- ✓ Then the single crystalline boules cooled-down to room temperature with a temperature gradient of 0.1°C/min.

+ encapsulated using SYLGARD 184[™] Silicone Elastomer Kit

Then polished with 1200 grit sandpaper, mineral oil as lubricant, cleaned by toluene.

Chemical purity of reagents at each production stage

HR-ICP-MS, concentrations are in ppb with 25% uncertainty

	CsCl initial	ZrCl₄ initial	ZrCl₄ 1st sublimation	ZrCl₄ 2nd sublimation	CZC 1st growth, tail	CZC 1st growth, nose	CZC 2st growth, middle
К	300	15000	700	700	2500	200	500
La	0.7	1.5	1	1	1	0.6	0.6
Се	1.5	2	1	1	2.5	3	2
Pr	0.1	4	6	6	1.5	1	1
Nd	<1	30	25	30	5	3	3
Sm	0.5	1	4	1	1	0.6	0.6
Eu-Lu	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hf	35	6400	5200	5600	1200	1800	1600
Ta, W, Re, Os, Ir	<2	<2	<2	<2	<2	<2	<2
Pt	<1	<100	<100	<100	<25	<25	<25
Tl	0.4	<0.2	<0.2	0.2	1	<0.2	<0.2
Pb	<1	30	20	30	150	1	13
Bi	<0.5	<0.5	1.5	2.6	1.5	<0.5	1.6
Th	<0.05	70	0.5	0.2	< 0.05	<0.05	<0.05
U	<0.05	1000	7	0.36	0.35	0.13	<0.05

Cs₂ZrCl₆ crystal radiopurity

measured with the ultra-low background **HP-Ge** γ spectrometers of the **STELLA** facility at LNGS over 700 hours.

Our crystals are rather clean, even if they were grown from 99.9% purity grade raw materials 14

First low-background measurements of CZC at LNGS (Italy)

Cone

0.53(4)

0.2(1)

0.23(7)

0.03(3)

2.2(2)

0.29(4)

21.0(3)

0.70(3)

0.07(2)

0.05(2)

36(4)

≈ 270

6(1)

Internal

contamination

(mBq/kg)

Cylinder

1.17(5)

3.8(1)

< 0.02

0.12(3)

6.7(3)

3.0(1)

33.9(3)

1.08(3)

0.28(7)

0.44(4)

42(2)

≈ 290

5(1)

Cs₂ZrCl₆: Background model

Experimental limits on various decay modes in ^{94,96}Zr isotopes

Transition	Decay mode	Final state of daughter nucleus, keV	Experimental limit on T _{1/2} at 90% C.L., yr
$^{96}Zr \rightarrow ^{96}Mo$	0ν2β	g.s.	>1.5×10 ²⁰
		2 ₁ +, 778	> 1.5×10 ¹⁹
	2ν2β	g.s.	> 7.4×10 ¹⁷
		2 ₁ +, 778	> 3.8×10 ¹⁷
	β	g.s.	> 1.0×10 ¹⁷
$^{94}\text{Zr} \rightarrow ^{94}\text{Mo}$	0ν2β	g.s.	>2.6×10 ¹⁹
		2 ₁ +, 871	> 3.8×10 ¹⁸
	2ν2β	g.s.	>2.4×10 ¹⁸
		2 ₁ +, 871	> 1.9×10 ¹⁷

P. Belli et al 2024 JINST 19 P05037, and to appear

New low-background measurements in DAMA/CRYS setup (LNGS)

- \checkmark Three new Cs₂ZrCl₆ crystals + one Cs₂HfCl₆
- ✓ Total mass of 3 CZC = 59.5 g, mass of CHC= 16.87 g.
- ✓ FWHM = 6-8% @ 662keV
- Produced from high purity and purified raw materials (> 99.99%)
- CZC crystals are encapsulated in a silicon-based resin + quartz window
- ✓ Modified experimental setup
- ✓ Measurements started on June 30th, 2023, for a total of 97.7 days live time

DAMA/CRYS setup at LNGS

Detectors time stability and determination of the calibration parameters

<u>The reference peaks remain rather stable within the</u> <u>experimental errors, with a typical variation <1%.</u> Instead for the **CHC** a **small shift in time**: maybe due to the hygroscopicity of crystal (not encapsulated).

parameters as a function of time.

P. Belli et al 2024 JINST 19 P05037

Data analysis of the Cs₂ZrCl₆ crystals

20

P. Belli et al 2024 JINST 19 P05037

Cs₂ZrCl₆: Background model

Contribution of external gammas from PMT's is dominant.

Chain	Nuclide	Internal contamination (mBq/kg		
			CZC -2	CZC – 3
²³⁸ U	²³⁸ U	< 0.08	3.16(14)	4.58(18)
	²³⁴ U	< 0.12	2.86(22)	4.20(33)
	²³⁰ Th	< 0.12	< 0.28	< 0.6
	²²⁶ Ra	< 0.05	< 0.06	< 0.17
	²¹⁰ Pb	< 1.3	< 0.6	1.32(38)
²³⁵ U	²³⁵ U	< 0.14	< 0.16	< 0.37
	²³¹ Pa	< 1.3	16.95(48)	24.69(56)
	²²⁷ Ac	< 0.013	0.62(3)	0.94(6)
²³² Th	²³² Th	< 0.10	< 0.12	< 0.12
	²²⁸ Th	< 0.011	< 0.04	< 0.16
	1070			
	¹³⁷ Cs	100(3)	-	-
	¹³⁴ Cs	58(6)	42(7)	55(7)
	⁸⁷ Rb	1067(5)	318(14)	441(9)
	⁴⁰ K	< 1.1	11(2)	17(3)

Perspectives and conclusions

- The blue band is the extrapolation of the predictions on $T_{1/2}$ for all the Hf isotopes using the Geiger-Nuttall scaling law considering the data point observed in Ref. [1]NPA 1002 (2020) 121941.
- The red symbols represent the sensitivity that the measurement can reach using CHC crystal scintillators with 43.83 kg × day of total exposure.

First experiment using a Cs_2HfCl_6 crystal scintillator in coincidence with a HP-Ge detector has observed α decay of ¹⁷⁴Hf to the g.s. with a $T_{1/2} = 7.0(1.2) \times 10^{16}$ yr [V. *Caracciolo et al. NPA 1002 (2020) 121941*].

- First two Cs_2ZrCl_6 scintillating crystals have been grown in Queen's University and studied at the LNGS, Italy to search for 2β decay of ^{94,96}Zr isotopes [*P. Belli et al. Eur. Phys. J. A* **59**, 176 (2023)].
- New experiment using a CHC crystal scintillator and three CZC crystal scintillators has been performed in the DAMA/CRYS setup at LNGS [P. Belli et al 2024 JINST 19 P05037, and to appear].
- New measurement of a decay of ¹⁷⁴Hf to the g.s.: $T_{1/2} = 3.8^{+1.7}_{-0.9} \times 10^{16}$ yr.
- ➤ A new experiment is ongoing with 4 CHC crystals (Ø 26 ×20 mm³) encapsulated in silicon-based sealant.
- > Compounds with a general formula A_2MX_6 , where A = Li, Na, K, Rb, Cs, Tl; M = Sn, Te, Hf, Zr, Pt, Os, Re, Ru; and X = Cl, Br, or I, are flexible to the element of interest that can be embedded for its fundamental studies.

BACKUP SLIDES

Simplified decay schemes of naturally occurring Hf isotopes

 α decays of Hf isotopes considering the first two excited energy levels of the daughter nuclei. Energies of the excited levels and of the emitted γ quanta are shown. Relative probabilities of a single energy level are given in parentheses. The ¹⁷⁵Yb isotope decays via β^- with T_{1/2} = 4.185(1) d, while all the other Yb nuclei are stable.

Cs₂HfCl₆: background model of the α spectrum

Chain	Nuclide	Internal contamination (mBq/kg)
		CHC (16.87 g)
²³⁸ U	²³⁸ U	7.6(3)
	²³⁴ U	6.7(5)
	²³⁰ Th	< 0.5
	²²⁶ Ra	0.04(2)
	²¹⁰ Pb	0.12(7)
²³⁵ U	²³⁵ U	1.3(5)
	²³¹ Pa	0.92(13)
	²²⁷ Ac	<0.005
²³² Th	²³² Th	< 0.22
	²²⁸ Th	<0.02
	¹⁴⁷ Sm	0.25(10)
	¹³⁴ Cs	44(8)
	⁸⁷ Rb	< 400
	⁴⁰ K	< 2.3
		25

P. Belli et al 2024 JINST 19 P05037, and to appear

Half-life of α decay of ¹⁷⁴Hf to the g.s. of ¹⁷⁴Yb

Area of 2^{nd} peak = $118 \pm 11(stat) \pm 35(sys) = 118 \pm 37$

Half-life:

$$T_{1/2} = \ln 2 \cdot N \cdot \epsilon \cdot t/S$$

• N (number of nuclides) = $\frac{M}{W} \cdot \delta \cdot N_A = 2.412 \times 10^{19}$

M = 16.87 g; W(Cs₂HfCl₆) = 657 g/mole; $\delta(^{174}$ Hf) = 0.156(6) %

- ϵ is the PSD efficiency which corresponds to 99%;
- *t* is the measurement time (= 2344.8 h = 0.26767 yr);

 $\Rightarrow T_{1/2} = [3.8^{+0.4}_{-0.3}(stat)^{+1.6}_{-0.9}(sys)] \times 10^{16} = 3.8^{+1.7}_{-0.9} \times 10^{16}$ yr of α decay of ¹⁷⁴Hf

Comparing with result in [*NPA 1002 (2020) 121941*]: $\frac{|3.8-7.0|}{\sqrt{(1.7)^2 + (1.2)^2}} = 1.5$ Theoretical predictions: $(3.5 - 7.4) \times 10^{16} yr$.

Search for 2β decay in ^{94,96}Zr and for ⁹⁶Zr's β decay

Experiment	Transition	T _{1/2}	Technique	Ref.	
		90% C.L. (y)			Decay scheme of ⁹⁴ Zr
ZICOS, (Kamioka	⁹⁶ Zr 0⁺→ ⁹⁶ Mo 0⁺ ₁	under	Organic liquid	[1]	
Observatory, Japan)	(g.s.)	construction	scintillator		6' - 0
NEMO I, II, III, Frejus	⁹⁶ Zr 0⁺→ ⁹⁶ Mo 0⁺ ₁	>9.2×10 ²¹	Tracker	[2]	
(France)	(g.s.)	>1.29×10 ²²	detector	[3]	$0 \frac{2^{+}}{871}$
(next: SuperNEMO)					871.1 keV
Kimballton Underground	⁹⁶ Zr 0 ⁺ → ⁹⁶ Mo 2 ⁺ 1	>3.1×10 ²⁰	HP-Ge	[4]	
Research Facility, (USA)					$Q_{2\beta} = 1.144 \text{MeV}$ $0^{+} {}_{94} {}_{Mo}$
Collaboration at Fréjus	⁹⁶ Zr 0⁺→ ⁹⁶ Mo 2⁺₁,	>(2.6 – 7.9) ×10 ¹⁹	HP-Ge	[5]	β and 2β decay of $967r$. The decay O values and evolution
Underground Laboratory	0 ⁺ ₁ , 2 ⁺ ₂ , 2 ⁺ ₃				energies of the first three states of Nb are also indicated.
Collaboration at LNGS	⁹⁶ Zr 0⁺→ ⁹⁶ Mo 2⁺ ₁	>3.8×10 ¹⁹	HP-Ge	[6]	0^{+} 0.000 0.146 $Q = 0.017 MeV$
TILES (TIFR, Mumbai)	⁹⁴ Zr 0⁺→ ⁹⁴ Mo 2⁺ ₁	>5.2×10 ¹⁹	HP-Ge	[7]	$Q = 0.163 \text{ MeV}$ \rightarrow (5^+) $0.044 \qquad Q = 0.119 MeV$
Kimballton Underground	⁹⁶ Zr 0⁺→ ⁹⁶ Mo 6⁺	>2.4×10 ¹⁹	HP-Ge	[8]	⁹⁶ Nb
Research Facility, (USA)				[0]	
······································					
$Q = 3.187 \; \mathrm{MeV}$					
[1] EPS-HEP (2019) 437 [2] NPA 847 (2010) 168 [7] NPA 847 (2010) 168 [7] NPA 847 (2010) 168			(1996) 487 994) pp. 29–34 Icl. Part. Phys. 45 (2018) 074	5104	$\frac{\beta\beta - \text{decay}}{T_{1/2} \sim 10^{19} \text{ y}} \longrightarrow 0^+ \frac{0^+ - 0^+}{96 \text{Mo}} = 0.000$
[3] PhD U. Coll. London (2015) [8] S.W. Finch, W. Tornow, Nucl. Inst. Meth. A 806(2016)70–74 [4] S.W. Finch et W. Tornow, Phys, Rev. C 92 (2015) 045501 [9] J. Heeck and W. Rodejohann 2013 <i>EPL</i> 103 32001					