

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

SCIENCE INSTITUTE

Rare event search with cryogenic calorimeters

Lorenzo Pagnanini

Gran Sasso Science Institute Laboratori Nazionali del Gran Sasso

Outline

- Working principles
- Specific backgrounds of cryogenic calorimeters
 - Surface contaminations
 - $\circ 2\nu\beta\beta$ pileup
 - Low-energy excess
- Direct Dark Matter Search
 - CRESST / COSINUS
 - SuperCDMS / EDELWEISS
- Search for Neutrinoless Double Beta Decay
 - AMoRE
 - CUORE \rightarrow CUPID

Detection channels

- $E \Rightarrow$ energy release in the detector
- ε = energy to produce an excitation in a detector
- $N = E/\varepsilon \Rightarrow$ number of elementary excitations
- $\Delta E = \varepsilon \Delta N = \varepsilon \sqrt{N} = \sqrt{\varepsilon E}$ = energy resolution

Detector	Scintillators	Gas detectors	Semi- conductors	Cryoge calorime
3	100 eV	30 eV	3 eV	< 0.01

_ight ~few% Heat channel provides a high-resolution estimator for energy releases but a second channel is needed background rejection.

General working principle(s) Heatonly Heat + Light

CUORE

× Poor PSD

X No Particle ID

and all a stand and an

1.0

✓ Excellent Particle ID X Mass Scalability

Heat + Charge

✓ Excellent energy resolution ~ 20 eV ✓ Excellent energy threshold (~100 eV) ✓ Excellent PSD (with iZIP) X Mass Scalability

Surface contaminations

2vββ pileup

 Cryogenic calorimeters are intrinsically slower wrt other detectors • Typical signal rise time for massive calorimeters [O(100) g] are

	NTD	TES	KID	MMC
Heat	~10 ms	~500 us	~ 35 us	~3 ms
Light	830 us (best)	~25 us	85 us	~500 us
Reference	Barucci et al.	<u>G. Bratrud et al.</u>	<u>Casali, Cardani et al</u>	<u>AMoRe Exp.</u>

• Mo-100: golden candidate for next-generation experiment

- Light faster than heat but with smaller S/N ratio
- **Fastest half-life** $T_{1/2}^{2\nu} = 7.7 \times 10^{18}$ yr
- Combination of solutions:
 - heat + light discrimination
 - faster sensors (smaller NTD, TES, KID, MMC)
 - light signal **enhancement** (NTL amp)

Low-Energy Excess & Heat-only events

Several experiments based on cryo-calorimeters/bolometers observe an event excess at low-energy < 200 eV

- Mis-calibration, trigger effects, and passive scintillating excluded • Non compatible with **external radioactivity/common source**
- **Spectral shape** described by a single power-low
- Event Rate **decays exponentially** in time
- Event rate **rests after warm-up cycles**
- Similar rate regardless difference in mass, surface, material, TES dimensions

origin at the **interface** between crystal and TES

caused by the mismatch in the Thermal Expansion Coefficient (test ongoing...)

Major Rejection Techniques

Detector Modularity (surface events / multi-Compton γ -rays)

Surface sensitivity

Light/Charge assisted **Particle ID** (α -particles / e-recoil)

Light Detector as 4π Active Veto (surface events)

SWOT table for cryogenic calorimeters

STRENGTHS

- Excellent energy resolution (~0.5 %)
- High containment efficiency
- Low-energy threshold
- Versatility in the material choice
 - Se-82, Mo-100, Te-130, Cd-116
 - Ge, Si, CdWO₄, CaWO₄, Csl, Nal
- High Q-value
 Iower intrinsic background
 - \circ higher $\mathscr{G}^{2
 u}(Q_{etaeta},Z) \propto Q_{etaeta}^{11}$

Modularity

- Scalability without performance spoiling
- Muti-isotope approach

OPPORTUNITIES

• More experiments in the same infrastructure • Multipurpose experiment ($0\nu\beta\beta$ - DM - SNv)

WEAKNESSES

No tracking

• Short $2\nu\beta\beta$ half-life (Mo-100)

Surface events sensitivity
 no "protective" dead layer of fiducial volume

Technological effort in cryogenics for mass scalability
 More difficult with respect to loaded LS

Intrinsically slow detector response

No ββ-daughter tag

No Liquid Argon active veto (as Ge Diodes)

THREATS

• Isotopic enrichment

Neutrinoless Double Beta Decay Search with Cryogenic Calorimeters

The CUORE Experiment

Counts keV⁻¹ kg⁻¹ yr

One of the most advanced application of LTD

- 988 natural TeO₂ crystals @ ~ 15 mK
- NTD readout
- Total mass : 742 kg of TeO_2 (~206 kg ¹³⁰Te)
- Current exposure: 2 ton x yr
- \circ FWFM ~ 7.3 keV

• Background index ~ 1.4 x 10⁻² counts/keV/kg/yr

11

CUPID - CUORE Upgrade with Particle ID

Main Features

- ~1600 enriched Li₂MoO₄ crystals @ ~ 15 mK
- CUORE infrastructure + CUPID-0/CUPID-Mo
- ^o Total mass : 450 kg of LMO (~240 kg ¹⁰⁰Mo)
- FWFM (Goal) ~ 5 keV
- Background index ~ 1 x 10⁻⁴ counts/keV/kg/yr

Background improvements wrt CUORE

- Light Assisted PID $\Rightarrow \alpha$ rejection
- From ¹³⁰Te to ¹⁰⁰Mo $\Rightarrow \beta/\gamma$ reduction
- NTL amplification of light signal ➡ pileup rejection
- Muon Veto (test ongoing in CUORE)
- New neutron Veto (design ongoing)

Background budget: P. Loiza talk

CUPID's family and friends

Surface sensitivity **NTL** amplification of light signal

Multi-isotope approach **Active inner veto NTL** amplification of light signal

See D. Poda talk

OPOSSUM

New isotopes with higher **Q**-values (Nd-150 and Zr-96)

Single Side vs Multi Side discrimination with fast MKID sensors

CUPID's family and friends

CROSS demonstrator

- 36 LMO + 6 TeO crystals (enriched)
- Operation early 2025 in Canfranc
- Mass : 4.7 kg of ¹⁰⁰Mo
- Background index ~ 10⁻³ counts/keV/kg/yr

Lighter assembly to reduce the amount of close inert material

14

AMORE-I (2020.12 - 2023.5 ~ 900 days)

• Run @ Yangyang Underground Laboratory (Y2L) • 13 CMO crystals (4.6 kg) and 5 LMO (1.6 kg) crystals Confirmed stable operation of MMC+SQUID system @12 mK • Total exposure: 8.02 kg•yr (3.89 kg•yr of Mo-100)

• Backgrounds : 0.025(2) ckky • CMO: 0.026(3) ckky • LMO: 0.021(5) ckky

 $^{\circ}T_{1/2}^{0\nu} > 3.0 \times 10^{24} yr$ years <u>Agrawal et al., arXiv:2407.05618</u>, submitted to PRL

AMORE-II (2024 - 2030)

• To be Installed at Yemilab, 1000 meter deep • 360 crystals LMO (+13 CMO)

- MMC + SQUID for both heat & light signals
- Si wafer for light detector w/ Vikuiti reflector
- DR from Leiden installed @ Yemilab.
- Shielding with Pb and PE, Water
 - Lower part : Pb (25cm) + PE(70cm) + PSMD
 - Upper part : Inner Pb (25cm) + WCMD (70cm)

• Backgrounds

- \circ Goal < 10-4 ckky
- Main backgrounds are Outer Pb, Pileup
- ^o Sensitivity : 4.6×10^{26} years 90% CL
- Schedule
 - 90 crystals : 2024-2025 (Stage 1)
 - 360 crystals : 2026-2030 (Stage 2)

See <u>O. Gileva poster</u>

AMORE-II (2024 - 2030)

Improvements to be done before full scale: Outer Pb shield

Replace with 5cm of purer Pb or Cu **Detector holder** → Confirm cleaning works $OVC \rightarrow Replace with purer STS$ **LMO** internal \rightarrow Confirm with 90 crystal run **Pileup** \rightarrow Improve rejection with machine learning

Direct Dark Matter Search with Bolometers

The CRESST Experiment

~3600 m.w.e. deep

CRESSI

- μs: ~3x10⁻⁸/(s cm²)
- γs: ~0.73/(s cm²)

• neutrons: $4x10^{-6}$ n/(s cm²)

Cryogenic Rare Event Search with Superconducting Thermometers

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ~15 mK using Scintillating CaWO₄ crystals as target and Silicon on Sapphire (SOS) crystals as cryogenic light detector. Both with TES readout!

CRESST Results (I)

Detector 1 - 23.6 g CaWO₄

- Data taking Oct. 2016 Jan. 2018
- Exposure 5.7 kg days
- Baseline Resolution 4.6 eV
- Nuclear Recoil Threshold 30 eV

CRESST Results (II)

Detector 2 - 0.35 g Si wafer

- Data taking Nov.2020 Aug. 2021
- Exposure 55.1 g · days
- Baseline Resolution 1.36 eV
- Nuclear Recoil Threshold 10 eV

CRESST - Low Energy Excess Study

- Basic idea: instrument the absorber with 2 TES
- If the signal originates in the absorber the two TES are expected to show the same response.
- If the signal originates in or very close to one TES, the two response signals are expected to be different.

CRESST - Low Energy Excess Study

(low background + low noise).

- 5 Double TES CaWO₄ modules
- A stack of 4 Double TES Al₂O₃ LD with double TES (with ⁵⁵Fe source)
- 1 Mini-Beaker module
- TUM93A CaWO₄ from Run36

To explore the full potential of Double TES technology a Run in the CRESST cryostat was mandatory

The COSINUS Experiment

Testing the DAMA/LIBRA signal with dual-readout Nal cryogenic calorimeters

Current Status:

- Fist successful measurement of Nal as cryogenic calorimeter O JINST 12 (2017) 11, P11007
- Particle ID in Nal
 - <u>Phys.Rev.D 109 (2024) 8, 082003</u>
- Development of remoTES
 - <u>Nucl.Instrum.Meth.A 1045 (2023) 167532</u>
- First Dark Matter Result

<u>Phys.Rev.D 110 (2024) 4, 043010</u>

Si-beaker for 4π active surrounding of the crystal

Nal \rightarrow Au-wire/pad \rightarrow TES Phonons couple directly to electron system of Au-pad

14

- iZIP Detector
 - Prompt phonon & ionization signals allow discrimination between nuclear and electron recoil events
 - Event discrimination \rightarrow low background
 - Trade-off:
 - ✓ Higher energy analysis threshold
- HV Detector
 - Drifting electrons and holes across a potential (V_b) generates many Luke phonons
 - Enables very low energy thresholds
 - Trade-off:
 - ✓ No event-by-event nuclear vs electron recoil discrimination

iZIP sensors measure E_t, and n_{eh}

HV sensors measure E_t

The SuperCDMS Experiment **Al Collection Fin Cooper pairs** Tower 4 (iZIP) Tower 3 (HV) Tower 2 (HV) Tower 1 (iZIP)

	Germanium	
HV	<u>Lowest threshold for low mass DM</u> Larger exposure, no ³² Si background	Lov S
iZIP	Nuclear Recoil Discrimination Understand Ge backgrounds	

 Mass: 30 kg Ge + 5 kg Si • Exposure: 140 kg yr

• Heat channel: TES readout

Silicon

west threshold for low mass DM Sensitive to lowest DM masses

Nuclear Recoil Discrimination Understand Si backgrounds

See Sagar Sharma Poudel Talk

The EDELWEISS experiment

New challenge: transposing rejection performance of EDELWEISS-III 860 g heat-and-ionization Ge detectors from keV to eV scales!

New Objective: ~1kg array in new cryostat @LSM (collab. with TESSERACT)

Main features:

- Ge cylindrical crystals m ~ 800 g
- O 2 NTD thermistors (TOP + BOTTOM)
- 2 Charge readout electrodes at ±4 V
- 2 Veto rings ±1.5 V (surface events rejection)

EDELWEISS: future program

Current sensitivity limited by Heat Only Events!

Discrimination at Low Voltage:

High–electron mobility transistor (HEMT) amplifiers instead of the standard junction gate field effect transistor (JFET)

Joint effort with RICOCHET

Discrimination at High - Voltage:

development of NbSi Superconductive Single-Electron Detector (SSED) to tag charge and reject HO background \rightarrow CRYOSEL.

JTLP 215 (2024) 268

Naganov–Trofimov–Luke amplification with higher Voltage (180 V) to lower the threshold on heat channel

Summary

Neutrinoless Double Beta Decay

Background are known! We need:

• faster sensor / higher SNR for pileup rejection

- active tool for surface event tagging
- more sensitive screening technique

Once the background has been fixed, the focus will be on the **signal** \Rightarrow mass scale-up!

Mass scalability requires:
funds (enriched material)
improved cryogenic infrastructures

Dark Matter (low-energy processes)

Background not fully known! We need:
mitigation of low-energy excess
understand what lies beneath it

Once the background has been fixed, the focus will be on the **signal**:

- mass scale-up = reproducible performance
- lower energy threshold
- new techniques for new paradigms (quantum sensing)

References

- S. Pirro, P. Mauskopf, <u>Annual Review of Nuclear and Particle Science</u>, 67, 161-181
- e-Print: 2406.12887
- 052003
- AMoRe Collab., Projected background and sensitivity of AMoRE-II, e-Print: 2406.09698
- EDELWEISS and CRYOSEL, PoS TAUP2023 (2024) 031
- above-ground prototypes, e-Print: 2404.02607
- Lett. 131, 091801

<u>ohttps://cuore.lngs.infn.it/</u> o <u>https://cupid.lngs.infn.it/</u> o <u>https://amore.ibs.re.kr/</u>

• M. Kaznacheeva, K. Schäffner, Scintillating low-temperature calorimeters for direct dark matter search,

CUORE Collab., Data-driven background model for the CUORE experiment, <u>Phys.Rev.D 110 (2024)</u> 5,

• EDELWEISS and RICOCHET and CRYOSEL Collaborations, Sub-GeV Dark Matter Searches with

• CRESST Collab., DoubleTES detectors to investigate the CRESST low energy background: results from

• SuperCDMS, First measurement of the nuclear-recoil ionization yield in silicon at 100 eV, Phys. Rev.

o <u>https://cresst-experiment.org/</u>

ohttps://supercdms.slac.stanford.edu/

o http://edelweiss.in2p3.fr/

7th Young Researcher Meeting

General WORKING Physics: Conf. Series 841 (2017) 012027

Credits: Andrea Giachero

IOP Publishing

doi:10.1088/1742-6596/841/1/012027

Transition Edge Sensor (TES) Metallic Magnetic Calorimeters 500 Magnetization M [A/m] BIAS SQUID 400 SQUID $<< R_{TES}$ 300 AM B V_{BIAS} R_{ref} R_{TES} 200 Au:Er 100 ΔT ΔT 0 Ū 124 126 128 40 60 80 100 120 140 130 20 Temperature [mK] Inverse Temperature [1/K] Micro-calorimeter Micro-calorimeter Mo/Cu TES Au:Er MMC 200with Bi absorber Gold absorber $\Delta E_{FWHM} = 1.5 \,\mathrm{eV}$ $\Delta E_{FWHM} = 1.7 \,\mathrm{eV}$ Counts 150- $\frac{\Delta E}{E} \simeq 1 \%$ ΔE $\overline{E} \simeq 0.3 \,\%$ 100 50-Al Kα $Mn^{T}K\alpha$ 1495 1485 1490 1500 5875 5885 5895 5905 Energy [eV] Energy [eV]

SuperCDMS - Surface Background Study

Radon progeny (long-lived ²¹⁰Pb) are potential surface background sources

164105 (2013)

Growing pure enriched LMO crystals

Purification of raw material (for last ~ 5 years work)

- Purification of both powders, $^{100}MoO_3$ and Li_2CO_3 .
- 180 kg of enriched MoO₃ powder is purified in wet chemistry: 150 kg at CUP and 30 kg at NIIC.
- Repurification of crystal melts and wastes is going on.

Cu surface background at detector sidewall

SuperCDMS progressing from Soudan 10⁻³⁹

At Soudan: (based on T2Z1)

- Bottom face: 20 nBq/cm²
- Sidewall total: 1000 nBq/cm²

SNOLAB Goals:

- Detector faces: 25 nBq/cm²
- Sidewalls: 50 nBq/cm²
- Sensitivity study vs. sidewall activity
- Summary concern \rightarrow Cu cleanliness
 - Using acidified-peroxide etching followed by citric acid passivation

Tested on McMaster and Aurubis copper

PNNL efforts on clean Kapton

- Ultra-low radioactivity Kapton and copper-Kapton laminates
 - IJ Arnquist et al., Nucl. Instrum. Meth. in Phys. Res. Sec. A 959 (2020) 163573

Kapton	²³⁸ U [pg/g]	²³² Th [pg/g]	^{nat} K [ng/g]
Commercial HN	1080 +/- 40	250 +/- 8	44 +/- 18
Radiopure R&D	12.3 +/- 1.9	19 +/- 2	34 +/- 14
Kapton-Cu	²³⁸ 11 [na/a]	²³² Th [na/a]	^{nat} K [na/a]
Laminates	0 [63,3]	111 [29, 3]	1 [19/9]
Commercial	158 +/- 6	24.1 +/- 0.9	< 210
Radiopure	9 +/- 4	20 +/- 14	160 +/- 80

- Ultra-low radioactivity flexible printed cables
 - IJ Arnquist *et al.*, EPJ Techniques and Instrumentation 10 (2023) 17

1. Laminate Selection
2. Cut and Drill Laminate
*
 Cleaning at Q-Flex
Shadow Seeding
*
5. Electroplating
6. Sanding
Cleaning at PNNL
*
8. Resist Coating
9. Developing
*
10. Etching
+
11. Stripping
+
12. Drying
+
 Cleaning at PNNL
 Coverlay Application
15. Microetching
*
16. ENIG Processing
17. Cleaning at PNNL

Blue: Standard Step **Orange Outline: Modified Step** Orange: New Step Green: Step done at PNNL

Cables	²³⁸ U [ppt]	²³² Th [ppt]	nat
Commercial	2670 +/- 30	260 +/- 10	170
Clean	31 +/- 2	13 +/- 3	550

- 40 g Ge crystal
- Phonon sensor = single NbSi
 strip (10 μm wide) forming a
 5 mm-wide circle
- Use this small film as Point-Contact-like electrode of HV detector
- NTD glued on large enveloping electrode (high-resolution NTLamplified heat measurement)
- NbSi operated as SSED
 (Superconducting Single-Electron Detector)
- Detector kept well below T_c so that SSED is only triggered by large bursts of primary NTL phonons from high-field region just in front of it

Most HO will not trigger SSED

August 26th, 2023

EDELWEISS + RICOCHET EXCESS suppression

CRYOSEL concept

