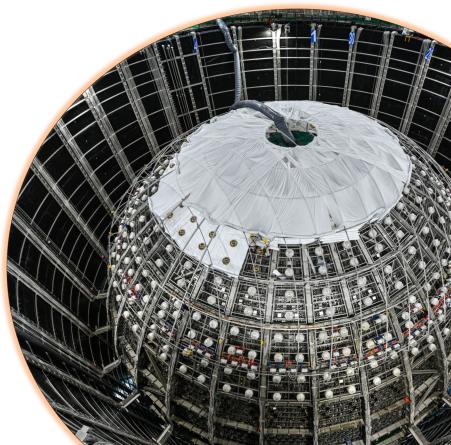


Low Radioactivity Techniques (LRT 2024) Kraków, Poland, 01-04 October 2024


Purification strategy of the JUNO liquid scintillator

Cecilia Landini

INFN Milano

on behalf of the JUNO Collaboration

Jiangmen Underground Neutrino Observatory

JUNO is a 20 ktonnes multi-purpose underground liquid scintillator detector

- Currently under construction in Southern China
- Main goal: determine the NMO and v oscillation parameters, detecting v from several sources

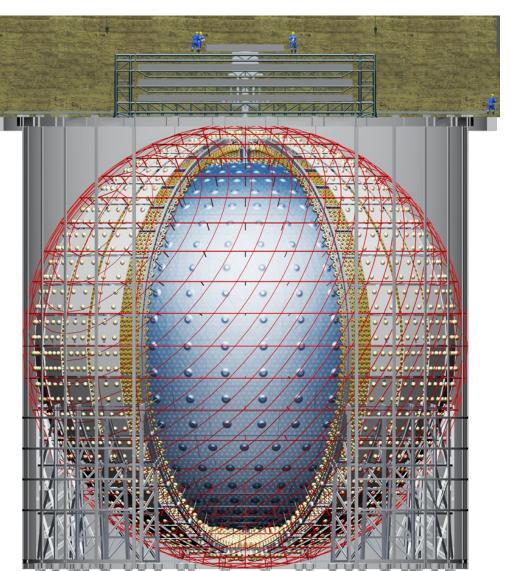
[JUNO physics and detector, PPNP, 123 (2022) 103927]

Huge collaboration: >700 collaborators, 74 institutes in 17 countries/regions

2

JUNO detector

Central detector (CD):


- 35,4 m-diameter acrylic sphere (thickness: 12 cm)
- 20.000 tonnes liquid scintillator (LS) as target
- 17.612 large PMTs (20-inch)
- 25.600 small PMTs (3-inch)
- 78% coverage

Water pool (WP):

- Muon veto + shield against external radioactivity
- 35-kton ultra-pure water
- 2.400 large PMTs (20-inch)

Top tracker muon veto:

• 3 layers of plastic scintillator

Detector technology and needs

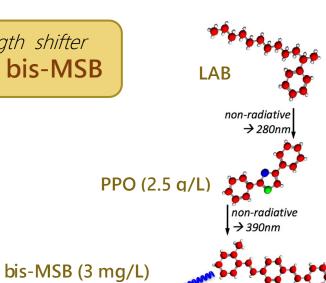
Which are the key features and challenges for JUNO?

- Huge active mass (largest ever LS detector)
- Excellent light propagation and collection:
 - LS optical properties
 - PMTs (78% coverage)
- Low background experiment:
 - veto and shielding against external radioactivity
 - material selection
 - underground facility
 - reduction of LS internal radioisotopes

Unprecedented energy resolution: 2.95% @1 MeV

These can be significantly improved by purifying the scintillator with dedicated purification systems

 \varDelta


JUNO LS requirements

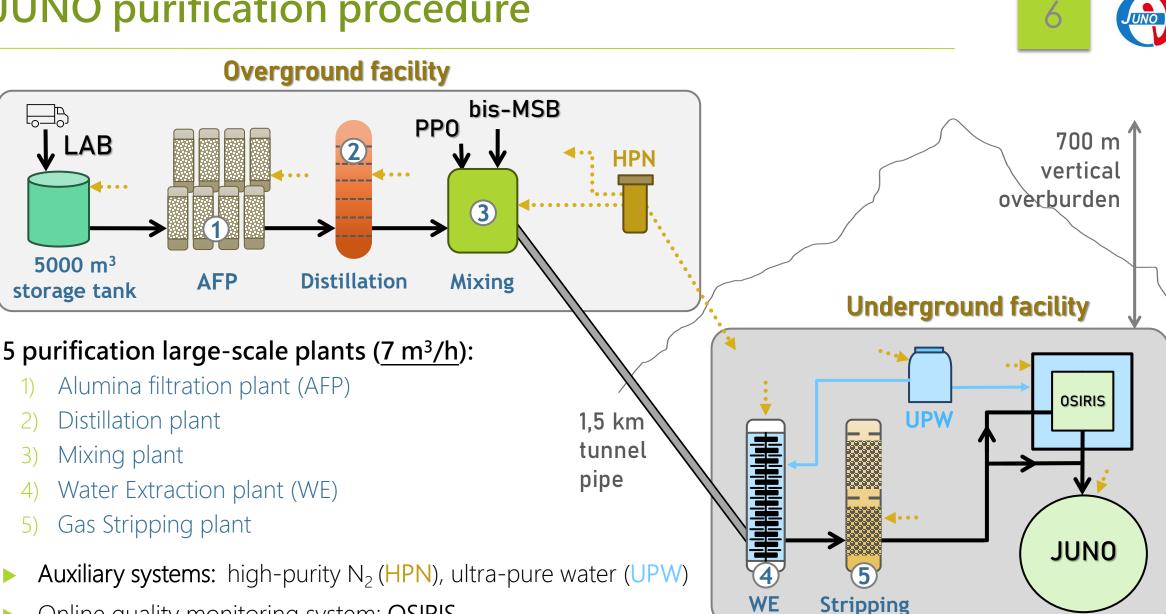
- Optical requirements:
 - High light yield: ~10.000 Photons/MeV \rightarrow ~1665 p.e./MeV
 - Attenuation length: LAB > 23 m; LS > 20 m @430 nm
- Radio-purity requirements:
 - Reactor anti-neutrinos: $^{238}U/^{232}Th < 10^{-15} g/g$
 - Solar neutrinos: ²³⁸U/²³²Th < 10⁻¹⁷ g/g
- Other requirements:
 - Energy response linearity
 - Long term stability (ageing)

See Xin Ling's poster

\mathbf{R} adioisotope	Contamination source	JUNO requirement	
		minimum	ideal
222 Rn	Air and emanation from material	$<\!250\mathrm{mBq/m^3}$	$< 5 \mathrm{mBq/m^3}$
$^{238}\mathrm{U}$	Dust suspended in liquid	$< 10^{-15} {\rm g/g}$	$< 10^{-17} m g/g$
232 Th	Dust suspended in liquid	$<\!10^{\text{-}15}{\rm g/g}$	$< 10^{-17} m g/g$
40 K	Dust suspended in liquid, PPO	$< 10^{\text{-}16} \: \mathrm{g/g}$	$< 10^{-18} { m g/g}$
39 Ar	Air	$<\!50\mu\mathrm{Bq/m^3}$	$< 50\mu{ m Bq/m}$
$^{85}\mathrm{Kr}$	Air	$<\!4{\cdot}10^{\text{-}24}{\rm g/g}$	$< 8 \cdot 10^{-26} \text{ g/}$

5

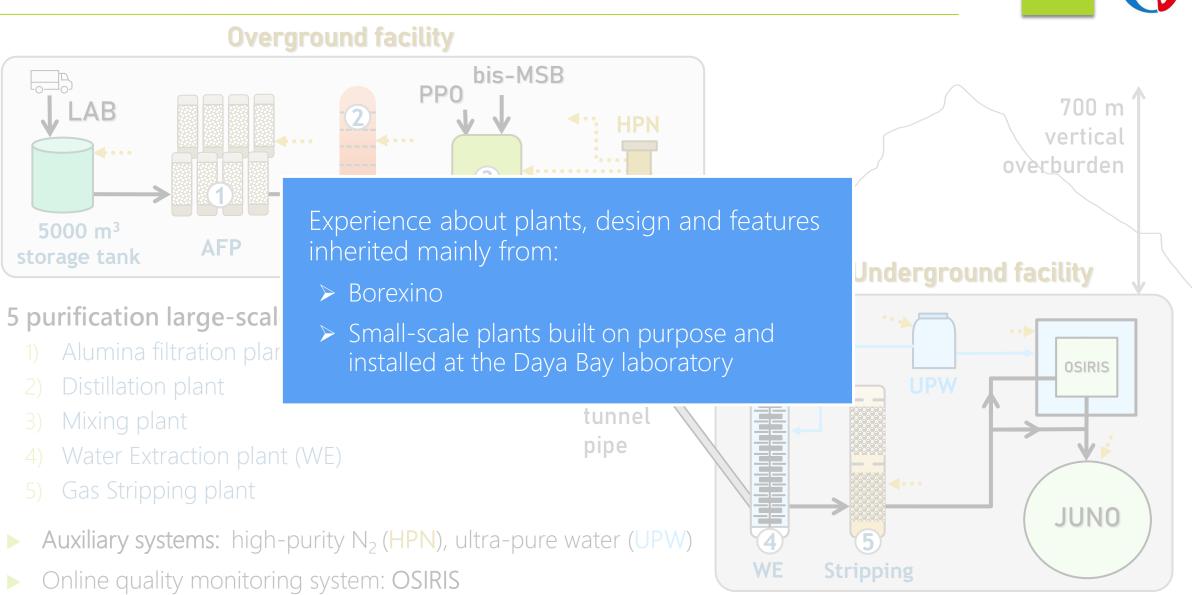
JUNO purification procedure


Ŀ_₽

2)

3)

4)


5)

INFN

Online quality monitoring system: OSIRIS

JUNO purification procedure

Istituto Nazionale di Fisica Nucleare

8

LAB/LS purification plants

LAB transportation & storage

9

- ▶ High quality LAB, with special production process by Jinling Petrochemical Co. Ltd
- Transportation to JUNO site via n.200 ISO tanks (20 tonnes LAB/each)
- Storage in the big tank:
 - Tank Volume: 5000m³, ~4200 tonnes raw LAB
 - 304L stainless steel with 0.4 um roughness

1 Alumina filtration plant (APF)

<u>Goal</u>: - removes optical impurities - increases the attenuation length of LAB

Overground LS building

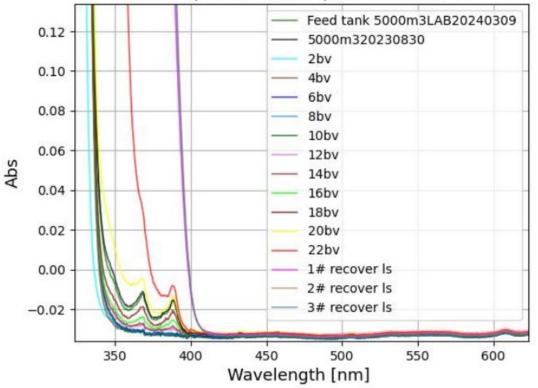
- → Optical purification of LAB
- Filtration through alumina (Al₂O₃) powder: removes optical contaminants (oxidized molecules, fused ring compounds)

Operation:

- * LAB pumped through **8 columns** containing Al_2O_3 (bed volume $BV=0,5m^3$ /each)
- ✤ 7 columns running + 1 always in maintenance
- Powder is replaced with new one, before saturation with removed contaminants
- Double filtration (220 nm, 50 nm)

1 Alumina filtration plant (APF) - results

Al₂O₃ powder features:


- Double vacuum packaging for transportation
- ✤ 20 of 500 tons onsite
- ✤ Low radioactivity: < 0.4 Bq/kg in ²³⁸U, ²³²Th

Plant fully commissioned onsite!

Results:

- Absorption spectra: successful removal of peaks in 355-400 nm interval (up to 20 BV)
- Attenuation length: raw LAB ~20 m → after AFP > 23,5 m
- ²³⁸U<0,31 ppq; ²³²Th=0,9± 0,1 ppq (preliminary results)

[Zhu et al., NIM A, 1048 (2023) 167890]

Absorption of AFP purification LS

ppq (parts per quadrillion) = 10^{-15} g/g

2 Distillation plant

<u>Goal</u>: - removes heavy metals, ²³⁸U, ²³²Th, ⁴⁰K - further improves optical properties of LAB

Overground LS building

- \Rightarrow Radiochemical+optical purification of LAB
- **?** 7m-high distillation column, with 6 sieve trays and internal reflux

2 Distillation plant

<u>Goal</u>: - removes heavy metals, ²³⁸U, ²³²Th, ⁴⁰K - further improves optical properties of LAB

Overground LS building

- \Rightarrow Radiochemical+optical purification of LAB
- 7m-high distillation column, with 6 sieve trays and internal reflux

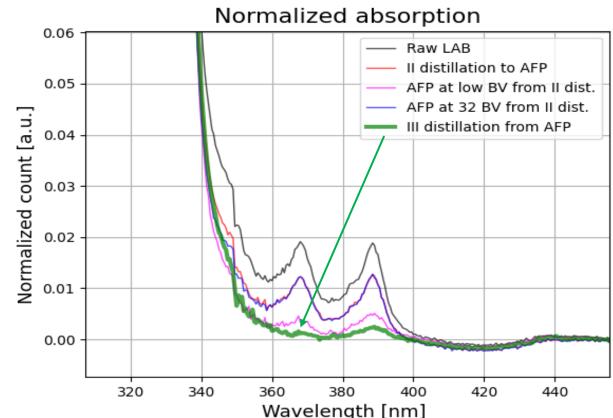
Column operation:

- Fractional distillation under vacuum: 5 mbar, 210-220°C
- Reduced boiling T: no thermal degradation
- LAB boiled in the bottom part. High-boiling, low-volatility impurities accumulated at bottom. Purified vapors extracted at the top

Distillation column parameters

N° trays	6 (3500 holes/ea)	
Height	7 m	
Diameter	2000 mm	
Temperature	210-220 °C	
Pressure	5 mbar	
Internal reflux	max 50%	
Bottom discharge	max 100 L/h	
Thermal power	1 MW _{th}	

2 Distillation plant - results


Process parameters:

- ♦ Top-bottom Δp ~55 mbar
- ◆ ~13 cm layer of liquid on each tray (720 kg/m³ LAB@ 200°C)
- ✤ N. theoretical stages: 5

Plant fully commissioned onsite!

Results:

- ²³⁸U<0,28 ppq; ²³²Th<0,22 ppq; ⁴⁰K<1,7 ppq (preliminary results)
- Absorption peaks in 355-400 nm range further reduced

[Landini et al., NIM A, 10.1016/j.nima.2024.169887]

Goal: - ²³⁸U, ²³²Th removal from PPO and bis-MSB - production of LS with JUNO recipe

Overground LS building

- Radiochemical purification of PPO, bis-MSB (LS)
- acid extraction + filtration

Plant operation:

- PPO and bis-MSB dissolved in LAB in higher concentration (=Master Solution, MS: x42 JUNO recipe)
- **MS purification**: 1 acid extraction with 5%HNO₃ + 2 water rinsing cycles
- MS double filtration: functional group filters + 50 nm filters
- Online dilution to JUNO recipe with LAB

15

Mixing plant parameters

105 g/L PPO Master Solution 126 mg/L bis-MSB Dissolving T 40°C Acid washing 40°C with 5% HNO₃ 1 time, 1:2 N° acid washing $(2m^3 acid : 4m^3 MS)$ N° water washing 2 times, 1:1

3 Mixing plant - results

[X. Sun., Neutrino2024 conf., Zenodo, 10.5281/zenodo.13684977]

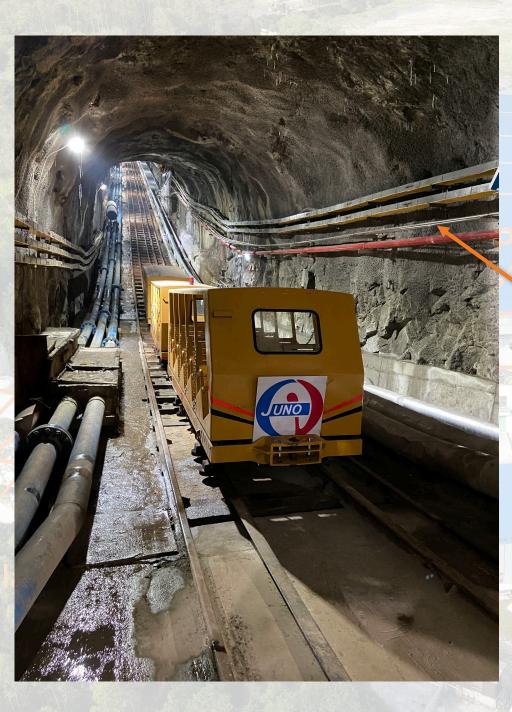
Features and status:

- ◆ 60 tonnes PPO (100% arrived): U=0,066 ppt, Th=0,090 ppq (requir.: <0,43 ppt ✓)
- Transportation in double bags under vacuum. Unpacking and tank loading from a glove box.
- Batch production: 1 MS batch/day (420 kg PPO + 504 g bis-MSB + 4 m³ LAB)

Plant fully commissioned onsite!

Results:

- ▶ MS purification reduces ²³⁸U/²³²Th more than 1 order at ppq level
- In LS: ²³⁸U<0,28 ppq; ²³²Th<0,22 ppq (preliminary results)</p>

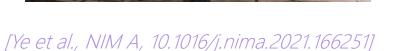


AFP plant

Mixing

1,3 km SS pipe for LS to the Underground LS Hall

Water Extraction plant


<u>Goal</u>: removes polar contaminants and ions containing ²³⁸U, ²³²Th, ⁴⁰K

• Underground LS hall

- ⇒ Radiochemical purification of LS
- 13m-high extraction tower with 30 turbine stages

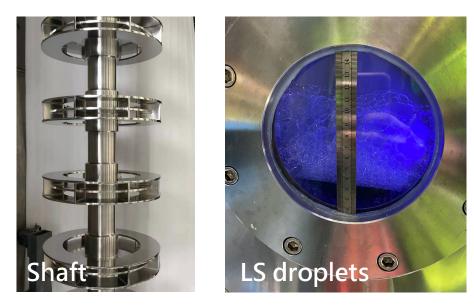
Plant operation:

- LS and UPW stirred together; LS spread into 2-3 mm droplets
- Counter-current flow: LS fed at the bottom (dispersed pahse), water at the top (continuous phase)
- Custom shaft layout with 30 turbine stages, separeted by perforated plates
- Double filtration (200 nm; 50 nm)

Water Extraction plant - results

Process parameters:

- LS:UPW ratio is 3:1 (7:2,3 m³/h)
- ♦ T≤40°C preferred to avoid too much residual water left in LS
- ♦ N. theoretical stages: ≥5


Plant fully commissioned onsite!

Results:

- ²³⁸U<0,28 ppq; ²³²Th<0,22 ppq (preliminary results)</p>
- Residual water content: 150-200 ppm (after filters)
- No worsening of absorption spectra

Extraction tower parameters			
Water-LS ratio	1:3		
Height	13 m		
Diameter	1 m		
N° turbine stages	30		
Temperature	Up to 70°C		
Rotation speed	30-60 r/min		

[Landini et al., NIM A, 10.1016/j.nima.2024.169887]

- Radiochemical purification of LS
- 9m-high stripping column, with unstructured packing ?

Column operation:

Goal:

 Gaseous impurities dissolved in the LS transferred to the stripping gas by desorption mechanisms

- removes gaseous impurities ²²²Rn, ⁸⁵Kr, ³⁹Ar, O₂

- removes residual water left in the LS after WE plant

- Counter-current flow: LS fed at the top by gravity, gas at the bottom ÷.
- Column filled with unstructured packing (Pall rings), to increase the contact surface

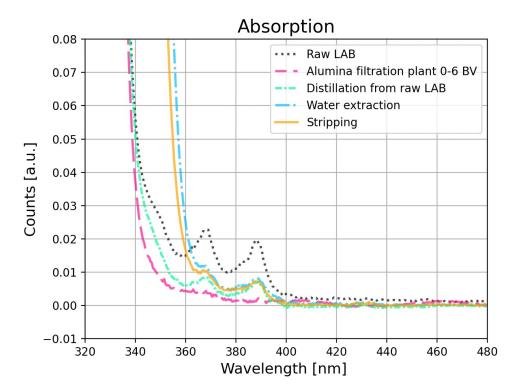
Stripping column parameters

Packing Pall Rings, 13mm $430 \text{ m}^2/\text{m}^3$ Interface area Height 9 m 500 mm Diameter 70°C Temperature Pressure 250 mbar 15 Nm³/h N₂ flow rate

2

(5) Gas stripping plant - results

Process parameters:

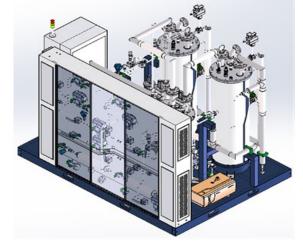

- Stripping under vacuum: 250 mbar, 70°C
- Stripping gas: 15 Nm³/h nitrogen (HPN)
- ✤ N. theoretical stages: 3-4
- ✤ Expected efficiency for Rn: ~95%

Plant fully commissioned onsite!

Results:

- ²³⁸U<0,28 ppq; ²³²Th<0,22 ppq; ⁴⁰K<0,7 ppq (preliminary results)</p>
- ▶ Water removal: from 150 ppm to **20 ppm**
- Excellent particle counting (much better than Class 50 MIL-STD-1246C)
- No worsening of absorption spectra

Auxiliary systems


High-purity nitrogen (HPN) system

- Low-temperature adsorption (LTA) technology
- Requirement: ²²²Rn<10 μBq/m³ ⁸⁵Kr<50 μBq/m³ ³⁹Ar<50 μBq/m³
- Flow rate: 100 Nm³/h
- Usage: blanketing for plants, 5000m³ tank and CD; stripping gas for stripping plant

Ultra-pure water (UPW) system

- Several devices (RO, degassing membranes, filters,...)
- Requirement: Rn<1 mBq/m³ Ra<3 μBq/m³ U/Th≤10⁻¹⁶ g/g
- Flow rate: 2.5 m³/h
- Usage: water extraction, OSIRIS

HPN and UPW are very important, since **they set the purification limit that can be reached in the purification processes** (WE, stripping)!

[JUNO coll., EPJC, 10.1140/epjc/s10052-021-09544-4]

OSIRIS (Online Scintillator Internal Radioactivity Investigation System)

- ▶ <u>Goal</u>: online measurements of the final LS radiopurity, before filling into JUNO detector
 - Similar to CTF in Borexino
 - 1/7 (1 m³) of the produced LS checked online during JUNO CD filling
- Design:
 - Cylindrical inner acrylic vessel (AV) with 20m³ LS
 - External water tank (550m³, 3m water shielding against external background)
 - 64+12 20"-PMTs
 - Calibration (γ sources, laser)
- Sensitivity goal: 10⁻¹⁵/10⁻¹⁶ g/g for U and Th

In case of unqualified LS samples, the LS can be sent back and re-purified by WE and Stripping plants.

Water tank

24

OSIRIS system

Common features

Cleaning procedure

- Material selection: SS 316L or 304L
- Special **cleaning procedure** for plant **internal surfaces**:
 - 1. Mechanical polishing (roughness≤0.4 um)
 - 2. Orbital welding and local pickling
 - 3. Degreasing
 - 4. Electro-polishing
 - 5. Mild Passivation, with 25% nitric acid + 75% demineralized water
 - 6. Water rinsing (2 cycles; until pH>5)
 - 7. Filtered Compressed Air Drying
 - 8. Quality check (particle counting, pH and conductivity tests, roughness measurement, endoscopic inspection)
 - 9. Final water rinsing after installation at JUNO site

Plant leak tightness

It is important to prevent air and external contamination to enter the plants and come in contact with LAB/LS, to avoid pollution and oxidation.

- ► JUNO leak tightness requirements:
 - Single leak rate: <10⁻⁸ mbar L/s
 - Integral leak rate: <10⁻⁶ mbar L/s
 - Plants sealed and leak-tested through plant-wide campaigns
- Flange design with double oring protection and purging ports for HPN flushing
- Gas blanketing of all tanks, columns and equipment using HPN

QA/QC methods for LS

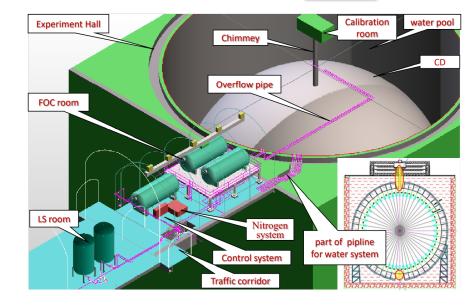
LAB/LS samples analysed through several QA/QC methods, selected and optimized with dedicated procedures to achieve better detection limits and sensitivity.

- For optical features:
 - Absorption spectra (spectrophotometer)
 - Emission spectra (spectrofluorometer)
 - **Attenuation length** (custom device: 3m tube with CCD camera)
 - Fluorescence time profile (custom setup with PMTs)
 - Refractive index (ellipsometer, refractometer)
 - Light yield (custom setup with PMTs)
 - Aging test
- For radiopurity.
 - **NAA** (Neutron Activation Analysis) (for U,Th,K) \rightarrow see Andrea Barresi's talk
 - **ICP-MS** with pre-concentration (for U,Th,Pb)
 - Rn measurement system (in HPN and LS)
 - ¹⁴C screening in LS \rightarrow see Mingxia Sun's talk

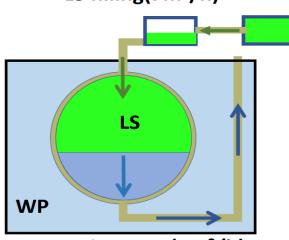
Others:

- Particle counting
- Device for water content in LS
- Device for LAB/LS content in water

FOC system (Filling-Overflow-Circulation) is responsible for the filling operations of the central detector.


- Water filling of CD and water pool
- LS-water exchange scheme inside the CD

Schedule:


- Commissioning phase of the purification plants almost completed
- ✤ LS filling of the detector foreseen to start in early 2025
- ♦ 6-months continuous filling (24/7) at 7m³/h

Drain water(7m³/h)

Detector filling

LS filling(7m³/h)

29

Summary

- Purification of the liquid scintillator is mandatory to meet the JUNO optical and radiopurity requirements.
- 5 purification plants for JUNO: AFP, vacuum distillation, mixing plant, WE, gas stripping. Auxiliary systems suppling UPW and HPN. OSIRIS system for LS online monitoring.
- Material selection and screening, internal surface cleaning and leak tightness are crucial points.
- **Several quality control methods**, relying on state-of-the-art and/or custom devices.
- Promising preliminary results from the purification plants commissioning onsite.
- ▶ JUNO LS filling foreseen to start in early 2025.

Thank you for your attention. Questions?

江門中藏不實驗。 iangmen Underground Neutrino Observatory