LSC

Low radioactivity measurements based on ICP-MS at LSC

Laura Cid-Barrio and Carlos Peña Garay lcid@lsc-canfranc.es Canfranc Underground Laboratory (LSC)

Workshop Low Radiativity Techniques LRT Krakow, 1st-4th October 2024

INTRODUCTION

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICP-MS)

ICP-MS (SQ)

- ✓ Installed at Main building Laboratory
- ✓ Thermo iCAP RQ ICP-MS (single quad).
- ✓ Sample preparation laboratory available.
- ✓ Working since 2017.

ICP-MS (SQ)

- ✓ Installed at Main building Laboratory
- ✓ Thermo iCAP RQ ICP-MS (single quad).
- ✓ Sample preparation laboratory available.
- ✓ Working since 2017.

ICP-MS/MS (QQQ)

- ✓ Underground Clean Room ISO6 class
- ✓ ICP-QQQ Agilent 8900 + Autosampler Cetac 560.
- ✓ Sample preparation equipment available in ISO7 Clean Room
- ✓ Installed since 2023
- ✓ He and NH₃:He (10:90): collision/reaction cell gases. O2 (Also available soon).

ICP-MS (SQ) vs ICP-MS/MS (QQQ)

Agilent Technologies®

Copper matrix: U and Th determination

Cooper sample: Etching procedure

Etched Copper

U and Th isolation/preconcentration – Chromatographic resin cartridge

TRU Resin ® Triskem

UTEVA RESIN ®Triskem

Copper matrix: U and Th determination

U and Th isolation/preconcentration UTEVA/TRU RESIN

STEPS:

o <u>Cleaning resin cartridges:</u> **TRU:** Ammonium oxalate.

UTEVA: 4M HNO₃

- <u>Blank procedure quantification</u> → ICP-MS
- Sample loading: Etched copper
- Remove copper matrix: HNO₃
- <u>Elution U and Th</u>: **TRU:** Ammonium oxalate.

UTEVA: diluted HNO₃

Copper matrix: U and Th determination

U and Th isolation/preconcentration UTEVA/TRU RESIN

T	RU Resin:	UTEVA Resin:
$\left(\right)$		
LODs copp	er sample:	LODs copper sample:
²³² Th: 20 ±	1 pg / g copper	²³² Th: 0.43 ± 0.02 pg / g copper
²³⁸ U: 11 ± 3	1 pg / g copper	²³⁸ U: 0.21 ± 0.01 pg / g copper

*Determined ICP-MS (SQ)

STEPS:

• <u>Cleaning resin cartridges:</u> **TRU:** Ammonium oxalate.

UTEVA: 4M HNO₃

- <u>Blank procedure quantification</u> \rightarrow ICP-MS
- Sample loading: Etched copper
- Remove copper matrix: HNO₃
- <u>Elution U and Th</u>: **TRU:** Ammonium oxalate.

UTEVA: diluted HNO₃

 Matrix removal (reducing matrix effects)
 Reduce possible interferences.
 Some analyte preconcentration
 Time consuming → Automatization Contamination risk during the isolation procedure → Increasing background signals

Quality Control CES at LSC

Control of the Whole Electroforming process: Collaboration S. Borjabad (CES LSC)

"Copper Electroforming at LSC": S. Borjabad Thursday 3rd L. Cid-Barrio LRT 1-4 October 2024 6

K Determination NaI crystals - Challenges

interferences

Natural isotopic abundance

	³⁶ Ar (0.34%)	
	³⁸ Ar (0.06%)	
³⁹ ₭ (93.26%)		³⁸ Ar ¹ H ⁺
⁴⁰ ₭ (0.012%)	40 Ar (99.6%)	
41 ₭ (6.73%)		⁴⁰ Ar ¹ H ⁺
	Isobaric	Polyatomic

interferences

- POLYATOMIC INTERFERENCES ³⁹K
- MATRIX EFFECTS: NaI matrix solution \rightarrow impact on ICP response factor.

K Determination NaI crystals - Challenges

Natural isotopic abundance

Power redution from 1500 W to 600-800W

- POLYATOMIC INTERFERENCES ³⁹K
- MATRIX EFFECTS: NaI matrix solution \rightarrow impact on ICP response factor.

Reaction gas: remove polyatomic interferences

Agilent Technologies®

STANDARD ADITION CALIBRATION STRATEGY

STANDARD ADITION CALIBRATION STRATEGY

Other type of samples analyzed

Plastic samples: PTFE , HDPE

HDPE samples

Ashing procedure: Pt crucibles

- Cleaning Pt crucibles
- Ashing process: plastic samples
- Ashes Reconstitution: acidic media
- ICP-MS: quantitative analysis ²³²Th, ²³⁸U

PTFE Recovery: ²³⁸U <60% ²³²Th <60% Still in progress

> The ICP-MS service of the LSC has been improved with the installation

of a new ICP-MS/MS in the Underground Clean Room.

- Progress has been made in the development of new methods for the quantification of U and Th in copper samples. Further improvement
 AUTOMATIZATION SAMPLE PREP.
- ➤ QA of electroforming procedure is being carried out in collaboration with LSC CES: precursors → copper pieces.
- A method for the determination of K in NaI crystals (in the presence of Tl doping) using cold plasma and MS/MS technology has been successfully implemented.
- ➢ Other matrices have been analyzed (Mo-based crystals, plastics) → Screening and Quantitative analysis.

Elemental Scientific®

Laboratorio Subterráneo Canfranc

THANK YOU

L. Cid-Barrio LRT 1-4 October 2024