Cosmogenic activation in materials used in low background experiments **smogenic activation in
naterials used in low
ckground experiments
• Examples of activation: origin and quantification
• Examples of activation studies:
• Detector targets: Ar, Xe, Nal, Ge, others
• Other materials: Cu. Ph identify and the Sunner Sunner Sunner Sunner Sunner Sunner Superior Superior Comparison Superior Comparison Superior Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Compa** mogenic activation in low

subseteddence in Low

subseteddence activation: origin and quantification

subseted to activation: studies:

- Detector targets: Ar, Xe, NaI, Ge, others

- Other materials: Cu, Pb, others
- Under examples of activation: origin and quantification
 $\frac{1}{\text{comples of activation: origin and quantification}}$
 $\frac{1}{\text{comples of activation studies:}}$
 $\frac{1}{\text{Order} materials: Cu, Pb, others}}$
 $\frac{1}{\text{Order} materials: Cu, Pb, others}}$ **aterials used in

Suppleming the September of activation: origin and quantification

Supplem of activation studies:

- Detector targets: Ar, Xe, Nal, Ge, others

- Other materials: Cu, Pb, others

- Underground activation**

-
- -
	-
	-

Kraków Polano

Susana Cebrián, scebrian@unizar.es

Cosmogenic activation: origin

- **Primary cosmic rays:** ~90% p, 9% α, heavy nuclei,

 Primary cosmic rays: ~90% p, 9% α, heavy nuclei,

 Secondary cosmic rays on the Earth surface
- **nogenic activation: origin

Primary cosmic rays:** ~90% p, 9% α , heavy nuclei,

totally attenuated in the upper atmosphere
 Secondary cosmic rays on the Earth surface
 π^{\pm} : p : e[±] : n : μ^{\pm} observed with **• Primary cosmic rays:** ~90% p, 9% α , heavy nuclei,
 • Primary cosmic rays: ~90% p, 9% α , heavy nuclei,

• **Secondary cosmic rays** on the Earth surface
 π^{\pm} : p : e[±] : n : μ^{\pm} observed with relative in π^\pm : <code>p</code> : <code>e $^{\pm}$: <code>n</code> : <code>µ $^{\pm}$ $\,$ observed wi</code></code> **activation: origin

smic rays:** ~90% p, 9% α , heavy nuclei,

uuated in the upper atmosphere
 cosmic rays on the Earth surface
 \therefore n : μ^{\pm} observed with relative intensities
 $\frac{10^{-3}}{10^{-3}}$
 $\frac{10^{-3}}{10^{-3}}$ 1 : 13 : 340 : 480 : 1420

J.F. Ziegler, IBM J. Res. & Develop. 42 (1998) 1

Only μ survive >10 m.w.e: flux reduced by several orders of magnitude

Cosmogenic activation: origin

Cosmogenic activation: origin
Production of long-lived radioactive isotopes in materials due to exposure to
cosmic rays (**"cosmogenic activity"**) can be an hazard for ultra-low
background experiments **Cosmogenic activation: origin**
Production of long-lived radioactive isotopes in materials due to exposure to
cosmic rays (**"cosmogenic activity**") can be an hazard for ultra-low
background experiments
— On the *Earth's su* **Cosmogenic activation:**
Production of long-lived radioactive isotopes in matericosmic rays (**"cosmogenic activity**") can be an haze
background experiments
— On the *Earth's surface*, is dominated by **neutrons**;
production **Cosmogenic activation: origin**
Production of long-lived radioactive isotopes in materials due to exposure to
cosmic rays (**"cosmogenic activity**") can be an hazard for ultra-low
background experiments
— On the *Earth's su* **Cosmogenic activation: origin**

Production of long-lived radioactive isotopes in materials due to exposure to

cosmic rays ("**cosmogenic activity**") can be an hazard for ultra-low

background experiments

- On the *Earth'* **COSMOGENIC activation: Origin**

duction of long-lived radioactive isotopes in materials due to exposure to

mici rays ("**cosmogenic activity**") can be an hazard for ultra-low

kground experiments

where the *Earth's surfa* **Example 19 and the context also in materials due to exposure to**
mic rays (**"cosmogenic activity"**) can be an hazard for ultra-low
kground experiments
Dn the *Earth's surface*, is dominated by **neutrons**; at *high altitu*

-
-
- Fraction

Low encoded and details are detailed by neutron and depth of the Earth's surface, is dominated by **neutron**
 Altion activation deep underground can also b
 Altion activation deep underground can also b
 Alt nuclear physics aspects of relevance in the direct detection of dark matter". P. Gondolo, Nucl. Data Sheets120 (2014) 175
	-

Processes of nucleon-nuclei interaction

- of a long-lived compound nucleus
- On the Earth's surface, is dominated by net
production is also important

 Muon activation deep underground can also

 Limited knowledge of cosmogenic activation
 nuclear physics aspects of relevance in the α

^P (INC) of nucleon-nucleon interactions followed by different deexcitation processes: spallation, fragmentation, break-up, fission, …

Cosmogenic activation: miti
Avoid cosmic rays!
• Flights are forbidden
• Limit surface residency time during fabrication and tra Cosmogenic activation: mitigation

-
-
- **Cosmogenic activation:**
 Avoid cosmic rays!

 Flights are forbidden

 Limit surface residency time during fabrication ar

 Store, or even produce, materials underground

Successful R&D for Ge crystal growth and deter **Cosmogenic activation: mitigation
• Flights are forbidden
• Limit surface residency time during fabrication and transport of components
• Store, or even produce, materials underground
• Shielding against hadronic componen COSMOGENIC ACTIVATION: Mitigation

Avoid cosmic rays!**

• Flights are forbidden

• Limit surface residency time during fabrication and transport of components

• Store, or even produce, materials underground

• Shielding **Cosmogenic activation: mitigation

smic rays!**

sare forbidden

surface residency time during fabrication and transport of components

or even produce, materials underground

Successful R&D for Ge crystal growth and detec Successful R&D for Ge crystal growth and detector fabrication D. Mei, arXiv:2409.03580
-

This complicates the preparation of experiments \rightarrow it is desirable to have reliable estimates of activation yields to assess the real danger of cosmogenic activation

Cosmogenic activation: quantification

Recipe for estimates:

-
- **Cosmogenic activation: quantification
Recipe for estimates:**
1. To know the **production rates R** of relevant isotopes in the targets, from
- Scarce experimental data from irradiation / controlled exposure
experiments Cosmogenic activation: quantification

For estimates:

xnow the production rates R of relevant isotopes in the targets, from

— Scarce experimental data from irradiation / controlled exposure

— Calculations from productio experiments **Example 19 Cosmogenic activation: quantification**
 Example 19 Cosmogenizes:

Show the **production rates R** of relevant isotopes in the targets, from
 $\begin{array}{rcl} \text{Score experiments} \ - \text{Calculations from production cross sections and cosmic ray spectrum} \ \text{R} & = N_t \int \sigma(E) \phi(E) dE & & \phi = \text{flux of cosmic rays} \end$
	-

$$
R=N_t\int\sigma(E)\phi(E)dE
$$

- N_t = number of target nuclei ϕ = flux of cosmic rays σ = production cross section E = particle energy
- 2. To estimate the **induced activity A** knowing the exposure the factor of ϵ_{exp}
 $A = R[1 \exp(-\lambda t_{\text{exp}})] \exp(-\lambda t_{\text{exp}})$

2. The estimate the **induced activity A** knowing the exposure history to cosmic

2. To estimate th rays 3. To compute the **background rate** generated by Monte Carlo simulation

3. To compute the **background rate** generated by Monte Carlo simulation

3. To compute the **background rate** generated by Monte Carlo simulation

3. **SECUTE 2014**

S. Cebrián, LRT2024, 2nd October 2024

S

$$
A = R[1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool})
$$

 t_{exp} = exposure time t_{cool} = cooling time underground

Cosmogenic activation: flux of cosmic rays

At the Earth's surface nuclide production is dominated by **neutrons**

 \rightarrow A parametrization based on a set of measurements of cosmic neutrons on the ground across the US considered

Dependent on altitude (height of the atmosphere) and geomagnetic rigidity \rightarrow correction factors must be applied at different altitudes / latitudes

Cosmogenic activation: flux of cosmic rays

Other descriptions of the cosmic neutron spectrum are available

EXPACS (EXcel-based Program for calculating Atmospheric Cosmic-ray Spectrum): https://phits.jaea.go.jp/expacs/

to calculate terrestrial cosmic ray fluxes of neutrons, protons, light ions, muons, electrons, positrons, and photons nearly *anytime* and *anywhere* in the Earth's atmosphere.

CRY (Cosmic-ray Shower Library) generator

Cosmogenic activation: production cross sections

Select the best description of the
excitation function $\sigma(E)$ by nucleons
 $\sum_{\substack{g \text{ is a} \\ g \text{ is a} \\ g \text{ is a}}}$ excitation function $\sigma(E)$ by nucleons

http://www-nds.iaea.org/exfor/exfor.htm

Cosmogenic activation: production cross sections

Dempirical formulae (Silberberg&Tsao equations): targets A ≥3, products
and E>100 MeV
MO written in FORTRAN with three modes of calculation
— **Excitation curve** of a specified nuclide for a specified target
— **Mass yi Example 12 Including the Including terms** (Silberberg & Tsao equations): targets A \geq 3, products

and E>100 MeV
 MO written in FORTRAN with three modes of calculation
 MO written in FORTRAN with three modes of c - Semiempirical formulae (Silberberg&Tsao equations): targets A ≥3, products $A \geq 6$ and $F > 100$ MeV

COSMO written in FORTRAN with three modes of calculation

- Excitation curve of a specified nuclide for a specified target
-
-
- C. J. Martoff, P. D. Lewin, Computer Physics Comm. 72 (1992) 96

YIELDX FORTRAN routine to calculate the **production cross-section** of a nuclide in a particular target at a certain energy

ACTIVIA C++ computer package to calculate

- Target-product cross sections
- Production and decay yields from cosmic ray activation

using semiempirical formulae but also experimental data tables if available

J. J. Back, Y. A. Ramachers, Nucl. Instrum. Meth. A 586 (2008) 286

Cosmogenic activation: production cross sections

Cosmogenic activation: production cross sections

- Monte Carlo simulation: standard packages (Geant4, FLUKA, ...)

Specific codes for the interaction between nucleons and nuclei requiring the

consideration of different Cosmogenic activation: production cross sections
- Monte Carlo simulation: standard packages (Geant4, FLUKA, ...)
Specific codes for the interaction between nucleons and nuclei requiring the
consideration of different reac Cosmogenic activation: production cross section

Monte Carlo simulation: standard packages (Geant4, FLUKA, ...)

Specific codes for the interaction between nucleons and nuclei requiring the

consideration of different rea mogenic activation: production cross sections

Carlo simulation: standard packages (Geant4, FLUKA, ...)

OGEAN

Despite the interactions — libraries

EM TALYS HMS-ALICE INUCL LAQGSM CEM ISABEL LAHET

INCL+ABLA CASCADE MARS **genic activation: production cross see**

• **simulation:** standard packages (Geant4, FLUKA, ...)

for the interaction between nucleons and nuclei requiri

of different reactions → libraries

ALYS HMS-ALICE INUCL LAQGSM CE Solution: production cross sections

• simulation: standard packages (Geant4, FLUKA, ...)

• GEANT4

• FLUKA of different reactions → libraries

ALYS HMS-ALICE INUCL LAQGSM CEM ISABEL LAHET

• NCL+ABLA CASCADE MARS SHIELD mogenic activation: production cross sections

Carlo simulation: standard packages (Geant4, FLUKA, ...)

of GEANT4

ddes for the interaction between nucleons and nuclei requiring the

ion of different reactions \rightarrow libra • Simulation: standard packages (Geant4, FLUKA, ...

for the interaction between nucleons and nuclei requi

of different reactions → libraries

ALYS HMS-ALICE INUCL LAQGSM CEM ISABEL LAHET

NCL+ABLA CASCADE MARS SHIELD BE

GEM TALYS HMS-ALICE INUCL LAQGSM CEM ISABEL LAHET INCL+ABLA CASCADE MARS SHIELD BERTINI …

https://tendl.web.psi.ch/tendl_2023/tendl2023.html

-
-

https://doi.org/10.1016/j.nima.2010.08.110

-
- https://tendl.web.psi.ch/tendl 2023/tendl2023.html

 Using the TALYS code

 For neutrons and protons up to 200 MeV

D-2009 (High Energy Activation Data)

https://doi.org/10.1016/j.nima.2010.08.110

 Only for Z≥12

 Us
-
-

https://wwwndc.jaea.go.jp/jendl/jendl.html

-
-

Cosmogenic activation: quantification

The main sources of uncertainty in the evaluations come from difficulties on • Cosmogenic activation: quantification

• precise evaluation of inclusive production cross-sections

• precise evaluation of inclusive production cross-sections

• accurate description of cosmic ray spectra

• accurate d direct measurements needed to validate models **Cosmogenic activation: quantification**
 main sources of uncertainty in the evaluations come from difficult

• precise evaluation of inclusive **production cross-sections**

• accurate description of **cosmic ray spectra**
 flux variation with latitude, longitude, altitude, and even time main sources of uncertainty in the evaluations of

• precise evaluation of inclusive production crose

• direct measurements needed to validate mode

• accurate description of cosmic ray spectra

• fux variation with latit tracking materials from fabrication to deployment Fracking materials from fabrication to deployment

shownass2021 Cosmic Frontier White Paper: Calibrations and backgrounds for dark matter direct detection,

arXiv:2203.07623

S. Cebrián, LRT2024, 2nd October 2024

Snowmass2021 Cosmic Frontier White Paper: Calibrations and backgrounds for dark matter direct detection, arXiv:2203.07623

Cosmogenic activation in materials used in low background experiments **is mogenic activation in

materials used in low

ckground experiments

Framples of activation: origin and quantification

Framples of activation studies:

Potter materials: Cu, Ph, others, and actives, and activation and smogenic activation in

naterials used in low

ckground experiments

• Cosmogenic activation: origin and quantification

• Examples of activation: studies:

– Detector targets: Ar, Xe, Nal, Ge, others; ^{3H}

– Underground mogenic activation: origin and quantification**
examples of activation: origin and quantification
examples of activation: origin and quantification
promples of activation studies:
- Detector targets: Ar, Xe, NaI, Ge, oth examples of activation: origin and quantification
 $\frac{1}{\text{comples of activation: origin and quantification}}$
 $\frac{1}{\text{comples of activation studies:}}$
 $\frac{1}{\text{Petector targets: Ar, Xe, Nal, Ge, others; 3H}}$
 $\frac{1}{\text{Pther materials: Cu, Pb, others}}$ **aterials used in low

Surfound experiment

Surfound activation: origin and quantification

xamples of activation: origin and quantification

— Detector targets: Ar, Xe, Nal, Ge, others; ^{3H}

— Underground activation

— U**

- -
	-
	-

Susana Cebrián, scebrian@unizar.es

1-4 Oct 2024 Kraków Polano

Activation studies: Ar
 Relevant cosmogenic products
 Relevant cosmogenic products
 Reasured activity in

Measured activity in $^{\bf 39}\bf{Ar}$: $\upbeta\cdot$ emitter with Q=565 keV, $\bf{T_{1/2}}$ =269 y mainly produced by $\ ^{40}\rm{Ar}(\rm{n,2})$ **Activation studies: Ar**
 Relevant cosmogenic products
 Relevant cosmogenic products
 Measured activity in
 Atmospheric Ar: ~1 Bq/kg (WARP, ArDM, DEAP)
 Consider Bridge (MARP, ArDM, DEAP)
 Consider Bridge (Dark Activation studies: Ar
 Relevant cosmogenic products
 Ar: β emitter with Q=565 keV, $T_{1/2}$ =269 y mainly produced by ⁴⁰
 Measured activity in

• **Atmospheric Ar:** ~1 Bq/kg (WARP, ArDM, DEAP)

• **Underground Activation studies: Ar**
 Relevant cosmogenic products
 Relevant cosmogenic products
 Ar: β ⁻ emitter with Q=565 keV, $T_{1/2}$ =**269 y** mainly produced by ${}^{40}\text{A}$
 Measured activity in

• **Atmospheric Ar:**

-
-

³⁷Ar: EC decay, E_{e,K shell}=2.8 keV, T_{1/2}=35.02 d mainly produced by ⁴⁰Ar(n,4n)³⁷Ar Observed in early data of DarkSide-50 **EXECT 4.1 EXAMPLE 1.4 FOR THE THE MANUTE THE ANDMINOTED EC decay, E_{e,K shell}=2.8 keV, T_{1/2}=35.02 d mainly produced rved in early data of DarkSide-50

EC decay, E_{e,K shell}=2.8 keV, T_{1/2}=35.02 d mainly produced r** • **Underground Ar:** (0.73±0.11) mBq/kg (DarkSide-50)

³⁷Ar: EC decay, E_{e,K shell}=2.8 keV, T_{1/2}=35.02 d mainly produced by ⁴⁰Ar(n,4n)³⁷Ar

Observed in early data of DarkSide-50

⁴²Ar: β· emitter, Q=599 keV, T **Ar:** EC decay, E_{e,K shell}=2.8 keV, T_{1/2}=35.02 **d** mainly produced by ⁴⁰Ar(n,4n)³⁷Ar
served in early data of DarkSide-50
Ar: β : emitter, Q=599 keV, T_{1/2}=32.9 **y** producing ⁴²K (β ⁻ emitter, Q=3525 keV

⁴²Ar: β⁻ emitter, Q=599 keV, T_{1/2}=32.9 y producing ⁴²K (β⁻ emitter, Q=3525 keV, $T_{1/2}$ =12.36 h) \rightarrow potential background for neutrinoless double beta decay

In Atm Ar: DBA: 92⁺²²₋₄₆ μBq/kg, GERDA: 50-100 μBq/kg, DEAP (40.4±0.5.9) μBq/kg Production mechanisms: two-step neutron capture and ^{40}Ar $(\alpha,2p)$ ^{42}Ar 42Ar: β· emitter, Q=599 keV, T_{1/2}=32.9 y producing ⁴²K (β· emitter, Q=3525 keV,

T_{1/2}=12.36 h) → potential background for neutrinoless double beta decay

In Atm Ar: DBA: 92⁺²²₋₄₆ μBq/kg, GERDA: 50-100 μBq/kg,

³H: β emitter with Q=18.6 keV, $T_{1/2}$ =12.3 y

Production rates R (sea level)

Activation studies: Ar
Production rates R (sea level)
- First <u>measurement</u> for 39 **Ar** and 37 **Ar** in an **irradiation experiment** at Los Alamos
(LANSCE) with a wide-band **neutron beam** that resembles the cosmic-ray **Example 19 Activation Studies: Ar**
 Production rates R (sea level)

First <u>measurement</u> for ³⁹**Ar** and ³⁷**Ar** in an **irradiation experiment** at Los Alamos

(LANSCE) with a wide-band **neutron beam** that resembles th **Production rates R** (sea level)

First <u>measurement</u> for ³⁹**Ar** and ³⁷**Ar** in an **irradiation experiment** at Los Alamos (LANSCE) with a wide-band **neutron beam** that resembles the cosmic-ray

neutron flux, quantifying + calculations at sea level from alternate mechanisms

R. Saldanha et al, Phys. Rev. C 100 (2019) 024608

C. Zhang, D.M. Mei, Astropart. Phys. 142 (2022) 102733

DarkSide-20k Collaboration, Astropart. Phys. 152 (2023) 102878; 2024 JINST 19 C02011

Production rates R (sea level): new calculations for **DarkSide-20k**

DarkSide-20k Collaboration, Astropart. Phys. 152 (2023) 102878; 2024 JINST 19 C02011
 BarkSide-20k
 BarkSide-20k
 BarkSide-20k
 BarkSide-20k

DarkSide-20k Collaboration, Astropart. Phys. 152 (2023) 102878; 2024 JINST 19 C02011

Activity A for DarkSide-20k from measured R for ³⁷Ar, ³⁹Ar and estimated **EXECUTE 1999**
 $\frac{1}{10}$
 Vity A for DarkSide-20k from measured R for ³⁷**Ar,** ³⁹**Ar** and estimated

³**H** assuming realistic exposure conditions at URANIA \rightarrow ARIA \rightarrow LNGS

³⁸Ar $\frac{(\mu Bq/kg)}{20.7 \pm 2.8}$

³⁸

Large amounts of Xe being used in several huge DM and DBD experiments

Production rates in kg-1d-1 -1

Controlled, long exposure to cosmic rays at LNGS and results from LUX L. Baudis et al, Eur. Phys. J. C 75 (2015) 485 TALYS [94] $\frac{16.0}{2}$ 16.0 0.04 11.7 12.1

Controlled, long exposure to cosmic rays at LNGS and results from **LUX**

L. Baudis et al, Eur. Phys. J. C 75 (2015) 485

3**7Ar** production by nuclear fragmentation of Xe quanti

37Ar production by nuclear fragmentation of Xe quantified by LUX-ZEPLIN

-
-

-1

J. Aalbers er al, Phys. Rev. D 105 (2022) 082004

Activation studies: NaI

• Cosmogenics found to make a very relevant contribution, according background
models, in anual modulation DM experiments **ANAIS-112** and **COSINE-100**
J. Amaré et al, Eur. Phys. J. C 79 (2019) 412; G. Adhikari et al, Eur models, in anual modulation DM experiments ANAIS-112 and COSINE-100

isotopes, 22 Na, 109 Cd, 113 Sn in NaI(TI) crystals

J. Amaré et al, JCAP 02 (2015) 046, P. Villar et al, IJMPA 33 (2018) 1843006; E. Barbosa et al, Astropart. Phys.115 (2020) 102390

Activation studies: NaI

³H: additional background source required in the very low energy region

Activation studies: NaI

Reasonable agreement between different estimates of production rates except for 125mTe

-
- Widely used in detectors for DM, DBD, radioassay
• Cobalt isotopes are produced together with ${}^{65}Zn$,
• ${}^{54}Mn$ and germanium isotopes (e.g. ${}^{68}Ge$)
• ${}^{68}Ge$) **Activation studies: G**
• Widely used in detectors for DM, DBD, radioassay
• Cobalt isotopes are produced together with $65Zn$,
 $54Mn$ and germanium isotopes (e.g. $68Ge$)

Enriched Ge

$8 Ge 68 Ga ^{65}Zn 63_N $57C$ ^{60}Co 55 F Mn 49_Y $v_{\rm H}$ **Total bkg** 10° $\overline{12}$ $\overline{18}$ 10 $\overline{14}$ 16 **Energy** [keV] Simulation spectrum

arXiv1802.09327 68 Ge

Production rates in kg-1d-1 -1

Natural Ge

Production rates in kg-1d-1 -1

Nuclear Physics B - Proceedings Supplements Volume 28, Issue 1, July 1992, Pages 280-285

Theoretical and experimental investigation

I. Barabanov, et al., Cosmogenic activation of germanium and its reduction for low background experiments, Nucl. Instrum. Meth. B 251 (2006) 115-120, http://dx.doi.org/10.1016/j.nimb.2006.05.011.

D.M. Mei, et al., Cosmogenic production as a background in searching for Rare Physics processes, Astropart. Phys. 31 (2009) 417-420, http://dx.doi.org/10. 1016/j.astropartphys.2009.04.004.

S.R. Elliott, et al., Fast-neutron activation of long-lived isotopes in enriched Ge, Phys. Rev. C 82 (2010) 054610, http://dx.doi.org/10.1103/PhysRevC.82. 054610.

S. Cebrián, et al., Cosmogenic activation in germanium and copper for rare event searches, Astropart. Phys. 33 (2010) 316-329, http://dx.doi.org/10.1016/ j.astropartphys.2010.03.002.

W.Z Wei, et al., Cosmogenic Activation of Germanium Used for Tonne-Scale Rare Event Search Experiments. Astropart, Phys. 96 (2017) 24, http://dx.doi.org/10.1016/j.astropartphys.2017.10.007.

R. Breier, et al., Monte-Carlo calculation of production rates of cosmogenic radionuclides in a HPGe detector operating in the Modane underground laboratory, Nucl. Instrum. Meth. A 978 (2020) 164355, http://dx.doi.org/10.1016/j.nima.2020.164355.

H. Bonet et al, Full background decomposition of the CONUS experiment, Eur. Phys. J. C (2023) 83:195, https://doi.org/10.1140/epjc/s10052-023-11240-4
Q. Nie et al., Study of cosmogenic activation in ⁷⁶Ge enriched germani Example at $\frac{1}{\text{Area of } k}$ activation of cosmogenic activation in $\frac{1}{\text{Area of } k}$ activation in $\frac{1}{\text{Area of } k}$ and $\frac{1$ P03002, https://doi.org/10.1088/1748-0221/19/03/P03002 **Example 1989**

Strophard Phys. 37 (2018) 96–105, http://dx.doi.org/10.1016/j.astropartphys.

R. Agness, et al., Production rate measurement of tritium and other cosmogenic

sloopes in Genaminum With COMSite, Astropartphy

Activation studies: other detector targets

Silicon: 32Si, 3H

Controlled irradiation of silicon CCDs at Los Alamos

R. Saldanha et al, Phys. Rev. D 102 (2020) 102006

Talk by Richard Saldanha

Production rates in kg-1d-1

Activation studies: other detector targets

Tellurium:

p/n irradiations of TeO_2 at Los Alamos $\qquad \qquad \overline{\hbox{Measure}}$ and CERN and study for natTe

A.F. Barghouty et al, Nucl. Instrum. Meth. B 295 (2013) 16 B. S. Wang et al, Phys. Rev. C 92 (2015) 024620

V. Lozza et al, Astropart. Phys. 61 (2015) 62

Production rates in $kq^{-1}d^{-1}$

Molibdenum:

Production rates in LMO of $88Y$, $82Rb$ affecting double beta decay of $100Mo$ Simulation based on **Geant4 + CRY** for n, p, μ and γ spectra

W. Chen, Eur. Phys. J. C 82 (2022) 549

$CaWO₄$: :

Comparison of CRESST data and simulation based on Geant4 + ACTIVIA

H Kluck et al, 2021 J. Phys.: Conf. Ser. 2156 012227

-1

Activation studies: Tritium

Tritium can be a very relevant background in the detector medium of DM

 \rightarrow Specific study to quantify **production rates** induced in **targets** used in

J. Amare et al, Astropart. Phys. 97 (2018) 96

$$
R=N_t\int\sigma(E)\phi(E)dE
$$

Activation studies: Tritium

Production rates in kg-1d-1 -1

Cosmogenic activation in materials used in low background experiments **indiscript of Supplem Supplem 2011 Consumpter Consumpter Supplem and quantification
• Cosmogenic activation: origin and quantification
• Examples of activation: studies:
• Examples of activation studies:
• Other materials smogenic activation in

naterials used in low

ckground experiments

• Cosmogenic activation: origin and quantification
• Examples of activation studies:

— Detector targets: Ar, Xe, Nal, Ge, others; ^{3H}
— Other material nogenic activaled in low
aterials used in low
semogenic activation: origin and quantification
osmogenic activation: origin and quantification
xamples of activation studies:
- Detector targets: Ar, Xe, NaI, Ge, others; ^{3H**} **aterials used in low

Supplementary of activation: origin and quantification

Mamples of activation: origin and quantification

— Detector targets: Ar, Xe, Nal, Ge, others; ^{3H}

— Other materials: Cu, Pb, others
— Underg aterials used in low

Kground experiment

Supplement activation: origin and quantification

Xamples of activation: origin and quantification

— Detector targets: Ar, Xe, Nal, Ge, others; ^{3H}

— Other materials: Cu, Pb, o**

-
- -
	-
	-

Kraków Polano

Susana Cebrián, scebrian@unizar.es

Material largely used in experiments with many activation studies

Production rates in kg-1d-1 -1

Measured rates from sensitive screening with Ge detectors after exposing large samples for long time in controlled conditions at LNGS / Jinping labs

Stainless steel

Sample exposed for a long time at LNGS outside laboratory

W. Maneschg et al. Nucl. Instrum. Meth. A 593 (2008) 448

M. Labustenstein, G. Heusser, ARI 67 (2009) 750

Production rates in kg-1d-1 -1

C. Zhang et al, Astropart. Phys. 84 (2016) 62

Activation studies: Pb, Ti, Al

Lead

Example exposed at Los Alamos to the
• Sample exposed at Los Alamos to the
neutron beam that resembles the
cosmic-ray flux
• Activation previously unknown found neutron beam that resembles the cosmic-ray flux **Example exposed at Los Alamos to the**
• Sample exposed at Los Alamos to the
neutron beam that resembles the
• Activation previously unknown, found
to be not relevant
• Activation previously unknown, found
TALYS [20]

to be not relevant

Production rates in kg-1d-1 -1

V. E. Giuseppe et al, Astropart. Phys. 64 (2015) 34

Aluminium

Calculations based on different approaches, including measured production cross sections

B. Majorovits et al, Nucl. Instrum. Meth. A 647 (2011) 39 R. Breier et al, Nucl. Instrum. Meth. A 978 (2020) 164355

Production rates in kg-1d-1 -1

Activation deep underground

**Example 12 Activation deep underground
Muons can produce by spallation radioisotopes inside the detector volume**
Effect of short-lived isotopes can be mitigated by time correlation with μ
11C in liquid scintillator: Effect of short-lived isotopes can be mitigated by time correlation with μ **

an produce by spallation radioisotopes inside the detector volume

Fifect of short-lived isotopes can be mitigated by time correlation with**

11C in liquid scintillator: three-fold coincidence between the crossing muon, the ejected neutron from ¹²C, and the ¹¹C decay (EC, β +, T_{1/2}= 20.4 m), allows a reduction of this background at the cost of a reduc **Example 12C, and the 11C decay (EC, b+, T1/2= 20.4 m)**
 Effect of short-lived isotopes can be mitigated by time correlation with μ
 ¹¹C in liquid scintillator: three-fold coincidence between the crossing muon, t **Activation deep underground**
 Muons can produce by spallation radioisotopes inside the detector volume

Effect of short-lived isotopes can be mitigated by time correlation with μ
 ¹¹C in **liquid scintillator:** t **Activation deep undergrows**
 CERCT CONTERT CONTERT CONTERT CONTENT

In **liquid scintillator:** three-fold coincidence betwee

tted neutron from ¹²C, and the ¹¹C decay (EC, β +, T_1

action of this background at Effect of short-lived isotopes can be mitigated by time correlation with μ

11**C** in **liquid scintillator:** three-fold coincidence between the crossing muc-

ejected neutron from ¹²C, and the ¹¹C decay (EC, β +, **11C in liquid scintillator:** three-fold coincidence between the crossing muon

ejected neutron from ¹²C, and the ¹¹C decay (EC, β +, $T_{1/2}$ = 20.4 m), allows a

reduction of this background at the cost of a reduct

Studies from irradiation experiments, data analysis of experiments like KamLAND and Borexino, and FLUKA simulations

C. Galbiati et al, Phys. Rev. C 71 (2005) 055805

S. Abe et al, Phys. Rev. C 81 (2010) 025807

S. Abe et al, Phys. Rev. C 81 (2010) 025807
G. Bellini et al, J. Cosmol. Astropart. Phys. 08 (2013) 049
M. Agostini et al, Eur. Phys. J. C 81 (2021) 1075
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{3}{2}$
 10^{-1}

M. Agostini et al, Eur. Phys. J. C 81 (2021) 1075

Letion of this background at the cost of a reduction of the Studies from irradiation experiments, data analysis of experim

and Borexino, and FLUKA simulations

T. Hagner et al, Astropart. Phys. 14 (2000) 33

C. Galbiati Studies from irradiation experiments, data analysis of experiments like

and Borexino, and FLUKA simulations

T. Hagner et al, Astropart. Phys. 14 (2000) 033

C. Galbiati et al., Phys. Rev. C 71 (2005) 055805

G. Bellini 53.7 s) affect ⁷⁶Ge DBD experiments S. Abe et al, Phys. Rev. C 81 (2010) 025807

G. Bellini et al, J. Cosmol. Astropart. Phys. 08 (2013) 049

M. Agostini et al, Eur. Phys. J. C 81 (2021) 1075

T7(m)**Ge in Ge detectors:** decays of ⁷⁷Ge (β -, Q = 2.7

MeV

C. Wiesinger et al, Eur. Phys. J. C 78 (2018) 597
M Neuberger et al, J. Phys.: Conf. Ser. 2156 (2022) 012216
Production of other metastable Ge isotopes quantified from

Majorana data and simulations

Activation deep underground

**Activation deep underground

Xe detectors:** production rates of ³H, ¹³⁷Xe and other unstable Xe isotopes

evaluated due to muon-induced neutron fluxes and spallation

• For four underground labs LNGS, SURF, LSM and SN **Example 19 Activation deep underground

29 Activation rates of ³H, ¹³⁷Xe and other unstable Xe isotop

evaluated due to muon-induced neutron fluxes and spallation

• For four underground labs LNGS, SURF, LSM and SNOLA Activation deep unde**
 e detectors: production rates of 3 H, 137 Xe and ot

valuated due to muon-induced neutron fluxes and

For four underground labs LNGS, SURF, LSM a

of the **DARWIN** observatory

Based on **MU**

- Activation deep underground
 Xe detectors: production rates of ³H, ¹³⁷Xe and other unstable Xe isotopes

evaluated due to muon-induced neutron fluxes and spallation

 For four underground labs LNGS, SURF, LSM and SN **Example 19 Activation deep underground

Ve detectors:** production rates of 3 H, 137 Xe and other unstable Xe isotopes

evaluated due to muon-induced neutron fluxes and spallation

• For four underground labs LNGS, of the DARWIN observatory
-

EXERIMENT DESCRIPED AT A SET AND SERVERT ON SERVERT AND SERVERT SERVERT AND SERVERT CONTAINS AND SERVERT CHANGE SERVERT CHANGE AND SERVERT CHANGE AND SERVERT CHANGE THE SERVERT CHANGE AND SERVERT CHANGE THE SERVERT CHANG

¹³⁷Xe (β emitter, Q=4173 keV, $T_{1/2}$ =3.82 m) from neutron capture analyzed for DBD

- From KamLAND-Zen: (1.42 ± 0.73) 10⁻³ kg⁻¹ yr⁻¹
- Based on MUSIC-MUSUN + Geant4 Simin

M. Adrover et al, arXiv:2306.16340

started and aboratories

shielding physics

started by thysics lists.

This is complementary siminals of the complement

From KamLAND-Zen: (1.42 **M.** Adrover et al, arXiv:2306.16340
 Table 6 Muon-inducted ¹³⁷Xe production rate at the different under-

ground laboratoris. The cental value is the rate obtained with the

similal ding physics lists.

ThGS (8.22±0 (FLUKA) simulations J. Albert et al, JCAP 04 (2016) 029 439±17 (403±16) atoms per year physics lists.

Site Rate $(kg^{-1}yr^{-1})$

LNGS $(8.22 \pm 0.27 \pm 1.00_{sys}) \cdot 10^{-4}$

SURF $(1.42 \pm 0.12 \pm 0.21_{sys}) \cdot 10^{-4}$

LSM $(6.75 \pm 0.00 \pm 1.00_{sys}) \cdot 10^{-4}$
 $\frac{1.87}{1.65 \pm 0.11 \pm 0.30_{sys}} \cdot 10^{-6}$

From KamLAND-Zen: $(1.42 \$ Site Rate $(\text{kg}^{-1}\text{yr}^{-1})$

LNGS $(8.22 \pm 0.27 \pm 1.00_{\text{sys}}) \cdot 10^{-4}$

SURF $(1.42 \pm 0.12 \pm 0.12 \pm 0.27_{\text{sys}}) \cdot 10^{-4}$

LSM $(1.65 \pm 0.11 \pm 0.30_{\text{sys}}) \cdot 10^{-4}$

SNOLAB $(6.75 \pm 0.60 \pm 1.00_{\text{sys}}) \cdot 10^{-6}$

SNOLAB $(6.7$
	-

L. Rogers et al, J. Phys. G 47 (2020) 075001

Activation deep underground

⁴²Ar in Ar: subsurface cosmogenic and radiogenic production carefully evaluated

S. Poudel et al, arXiv:2309.16169

-
- Underground

s. Poudel et al, arXiv:2309.16169

 Standard continental crust, 3000 mwe

 Radiogenic contribution, based on

TALYS cross sections, totally • Radiogenic contribution, based on TALYS cross sections, totally negligible
- Cosmogenic production in crust based on FLUKA simulation of μ 's from MUSIC

• Activity in UAr gas evaluated from 39Ar results, pointing to a suppression factor respect to AAr of at least 10⁷,
much higher than for ³⁹Ar

Summary

Cosmogenic activation of materials can jeopardize the sensitivity of ultralow background experiments, being increasingly important as background requirements get more stringent • **Summary**
• production of materials can jeopardize the sensitivity of ultra-
background experiments, being increasingly important as background
• production of long-lived isotopes at Earth's surface due to nucleons
• con • Commission of materials can jeopardize the sensitivity of ultra-
background experiments, being increasingly important as background
irements get more stringent
• production of long-lived isotopes at Earth's surface due t

-
- to fast muons

Cosmogenic activation of materials can jeopardize the sensitivity of ultra-
low background experiments, being increasingly important as background
requirements get more stringent
• production of **long-lived isotopes** at context of DBD, neutrino and DM experiments from direct measurements (with beams or from controlled, long exposure to cosmic rays) and from calculations based on different approaches mequirements get more stringent
 \cdot production of long-lived isotopes at Earth's surface due to nucleons
 \cdot continuous generation of short-lived nuclides deep underground due

to fast muons

Production rates and yiel • production of long-lived isotopes at Earth's surface due to nucleons
• continuous generation of short-lived nuclides deep underground due
to fast muons
Production rates and yields for several materials have been evalua • continuous generation of short-lived nuclides deep underground due
to fast muons
Dependence to fast muons
 Production rates and yields for several materials have been evaluated in the

context of DBD, neutrino and DM e **Production rates** and yields for several materials have been evaluated in the context of DBD, neutrino and DM experiments from direct **measurements** (with beams or from controlled, long exposure to cosmic rays) and from **Production rates** and yields for several materials have been context of DBD, neutrino and DM experiments from direct net (with beams or from controlled, long exposure to cosmic rand calculations based on different approac

-
-

https://doi.org/10.1142/S0217751X17430060


```
Article
```


MDPI

https://doi.org/10.3390/universe6100162

Every of detectors will be analyzed too.

Every of detectors will be analyzed too.

Every words: neutrino; double beta decay; cosmic rays; activation; radioactive background