The CAGe germanium array at the Center for Underground Physics

Douglas Leonard

Yangyang Underground Laboratory (Y2L)

Minimum vertical depth : 700 m Drive-in access: around 2 km

A5 lab space (2014 to ...) :

AMoRE-pilot/AMoRE-phase I 100Mo DBD experiment. Cosine Nal dark matter search 14 element HPGe Array

A6 lab space (since 2003):

Home to prior KIMS CsI DM experiment Houses two 100% HPGe detectors

ibs

CENTER FOR

UNDERGROUND PHYSICS

Other Assay Resources at CUP/Y2L

- Two 100% HPGe detectors underground at Y2L A6 site CC1 and CC2, N2 purged for Rn removal. Moved to Yemliab in 2023.
- Both have N2 purge boxes
 - CC1 with lift open access.
 - CC2 with glove-box/ purged airlock access.

CENTER FOR UNDERGROUND PHYSIC

Also

XIA ULtraLo-1800 alpha counter, 1800 cm² area. Compliments ICP-MS facilities in Daejeon.

See Poster By Olga Gileva for full Assay and Purification Program.

CC2 at Yangyang:

Source in Marinelli

beaker

HPGE General Assay Throughput since 2018

• 264 samples! (only counting from 2018)

Almost all by Eunkyung Lee

	20	18	20	19	20	20	20	21	20	22	20	23	Cuesto
Project Unit	CC1	CC2	6 years										
AMoRE samples	10	15	11	12	8	11	26	23	22	20	9	12	179
COSINE samples	5		3	1	3	3	5		3	1	3	3	30
SK samples								3		4			7
HPGe samples	6	2	3	2	2	4	1	1	2	1		2	26
Y2L sample	1		1	2				1					5
Yemilab								2	2		3	2	9
R&D sample			1			2		1	1		1	1	7
CENS								1					1
Total # of samples	22	17	19	17	13	20	32	32	30	26	16	20	264

The CAGe Detector Recap

• See report at LRT 2017 by E. Sala, and poster G.W. Kim

To dewars

lead Two arrays, two cryostats. "doors" 14 Detectors 70% Rel. Eff. Ea., Liftable upper array w/shield Room supplied with Rn-Free air to 2023 Vikuiti foil covers chamber for N2 flushing

Two rolling

ber for ushing Can't use 14 MCA's So we use NOTICE FADCs, But still with shaping amps. D.S. Leonard, LRT2024, Crackow

ibs

CENTER FOR

UNDERGROUND PHYSICS

Calibration and Summing

 14 MCA's are silly: We use NOTICE FADCs,

But still with shaping amps.

- Multi-detector combined analyses are pretty resource intensive for assay work. -> Solution: Sum.
- For summed gamma energy, or even to combine single-hit analysis (for ease)
 - -> we must pre-calibrate, and well.
- Shown is multi source, near-point-like calibration source (⁴⁰K,⁶⁰Co,¹³⁷Cs).
- By now we have 3 bad detectors (1 off, 2 poor resolution). ⁽³⁾

Summed Resolution.

- Multi-source calibration (⁴⁰K,⁶⁰Co,¹³⁷Cs)
- Summing can create non-Gaussian total peak shape and worse resolution, if resolutions or calibrations differ.
- Parameterized fit to resolution for all detectors:

Good agreement at all energies

 Summed resolution almost indistinguishable from individual detectors.

Rough analysis pipelines/toolchains

Sample

Data

User

Historical and Published Work

MoO₃ Powder measurements

- CAGe used extensively for measurement of MoO₃ powders pre/post purification, for AMoRE crystal growth.
- Results on raw and purified powder published.

[1] S. Y. Park et al NIM A 992, (2021).
[2] O. Gileva et al, Front. Phys., 30 March 2023 Volume 11 - 2023 <u>https://doi.org/10.3389/fphy.2023.1142136</u>

Ref [2] Unit: uBq/kg:

	²²⁸ Ac	²²⁸ Th	²²⁶ Ra	⁴⁰K
Raw ¹⁰⁰ MoO ₃	260 ± 50	210 ± 50	260 ± 50	8500 ± 1400
Purified ¹⁰⁰ MoO ₃	<27	<16	110 ± 30	1700 ± 340

Published Work, contd...

 CAGe detector paper, including Rn control, resolution, backgrounds, o-ring activity survey, electronics, waveforms etc.

Leonard, D. S. et al. NIM A 989, (2021). (Detector)

- Efficiency calibration via dead-layer correction Park, S. Y. et al App. Radiat. and Isot. **193**, 110654 (2023). (efficiency)
- 180Ta Decay simulation. Kim, G.W., et al. J. Korean Phys. Soc. 75, 32–39. (180Ta decay)

Sample

supporter (Copper)

AMoRe-II Radioassay Screening

- Collaboration of all CUP AMoRe assay efforts, especially CC1/CC2 and ICPMS.
- CAGe Highlights:
 - Lead survey measurements.

• Aurubis NOSV copper, Next slide

Agrawal, A. et al. (AMoRE Collab.) 2024. Front. Phys. 12. https://doi.org/10.3389/fphy.2024.1362209 (AMoRE Assay)

CENTER FOR

			²²⁶ Ra (mBq/kg)	²²⁸ Ac (mBq/kg)	²²⁸ Th (mBq/kg)	⁴ ⁰K (mBq/kg)	
Crystal	Natural CMO (1902)*	CUP	56 (4)	< 5.5	< 5.3	< 39	CC
	Enriched CMO (SE#3) ^b	CUP	< 2.0	< 3.2	< 1.6	< 3.2	CC
	Natural LMO (1602) ^a	CUP	< 3.3	< 2.6	< 1.5	29 (9)	CC
	Natural LMO (1801) ^b	CUP	< 1.2	< 3.2	< 1.3	< 14	CC
	Enriched LMO (1901) ^c	CUP	< 1.5	< 5.7	< 3.4	< 14	CC
	Enriched LMO (2005) ^b	CUP	< 3.5	< 4.1	< 3.6	< 14	CC
Crystal	SiO ₂ 8 µm	Admatechs	3.5 (6)	< 3.1	1.4 (4)	108 (10)	CC
surface	SiO ₂ 1.5 µm	Admatechs	< 1.7	< 2.3	< 0.90	< 16	CC
	Diamond, 1 µm	Saint-Gobain	8.2 (12)	64 (5)	54 (3)	34 (7)	CC
	SiC, 1 µm	Saint-Gobain	193 (10)	95(6)	101 (6)	100 (12)	CC
	SiC, 3 µm	Saint-Gobain	176 (10)	350 (20)	365 (20)	220 (23)	cc
	Mineral oil	LUBRIPLATE	< 0.81	< 1.8	< 0.69	< 7.9	CC
	Polishing pad	Ciegal	< 8.5	< 13	14 (3)	290 (50)	cc
	Polishing pad	Chem. pol.	840 (45)	55 (10)	71 (7)	480 (60)	CC
	Gold (4N)	TAEWON	< 5.9	< 6.0	< 11	< 33	CC
Cu holder	NOSV Cu ⁴	ndam	V COLO	ctod t	ahle	< 1.8	CAC
	NOSV Cu	Aurubis (2016)	< 0.67	< 0.80	< 0.65	< 3.5	CC
		mandem	Sociar	tickat	for all	< 6.0	CC
	M3 Brass screws	SANCO		UUC < 0.57	< 0.37	< 2.8	CC
Reflector	Vikuiti film	MUKOK	n n 1948	< 0.93	< 0.64	9.4 (24)	CC
Sensor	Superconducting wire	Supercon Inc.	nențs	< 6.2	< 4.1	< 170	CC
assembly	Polyimide PCB, HGLS- D211EM	Hanwha L&C	< 1.1	< 1.3	< 1.1	< 12	CC
	Pb/Sn solder (2021)	KNU	< 0.88	< 1.2	< 2.2	< 12	CC
	Pb/Sn solder (2023)	KNU	< 0.56	< 1.1	< 0.83	< 4.1	CC
	Tin (5N)	Alfa Aesar	1.38 (16)	0.75 (17)	< 0.47	5.1 (8)	CC
	Tin (6N)	Alfa Aesar	< 0.32	0.83 (24)	< 0.81	< 5.2	CC
	Stycast 2850	Emerson & Cuming	440 (45)	600 (50)	600 (50)	400 (120)	cc
	Stycast 1266 resin	Loctite	< 1.1	< 4.2	< 1.2	< 9.9	CC
	Stycast 1266 hardener	Loctite	< 11	< 12	< 3.1	< 36	CC
	Solder paste (UP78)	ALPHA	< 2.7	< 3.2	< 1.6	< 29	CC
	Solder paste	G.F. Thompson Co.	19.4 (12)	7.9 (13)	5.7 (6)	650 (40)	cc
	Si light detector wafer	IEMT	< 4.1	< 3.2	< 2.0	< 23	CC
Heater	Araldite AW 106 CI	Huntsman	1.7 (4)	< 1.7	< 1.0	11 (4)	CC
	Hardener, HV 953 U CI	Huntsman	2.8 (6)	< 2.2	< 1.2	< 8.9	CC
	Si haat dataatan uufar	Miemchemicale	. 20	< 20	< 20	< 19	cc

Raw materials were purified. Only ¹⁰⁰MoO₃ was purified.

aly ^{cor}MoO₃ was purified. e Section 3.4 for other reported activitie

Aurubis NOSV copper

- 145 kg sample from 3 tonne customorder of Aurubis NOSV copper.
- Machined to central and surrounding plates.
- Data:
 - 82 days good Rn-Free data.
 - 31 days Rn-free background.
 - Systematics limited anyway (next slide.)
- gdfit multi activity-constrained spectral fit needed to ²³¹Pa; helps for ²²⁷Ac
 (Almost every peak has potential interferences, esp. 231 Pa)

See AN	loRE assay pape	er
	Activity	
<mark>Chain</mark>	uBq/kg	
226Ra	<87	
228Th	<75	
228Ac	<68	
40K	<1800	
235U	<44	
231Pa	<690	F
227Ac	<32	S
234Th	<330	P
Cent	ral sample plate	

Sample Background Shielding [1-3]

- First considered for CC1/2 results [1,3]
- MC sims can determine shielding vs E, for known bkgd geometry.

(Now automated with sample sim)

- Bkgd src isn't known = systematic error.
 - Highest shielding/result: From distributed ie cryostat, air, and perimeter sources (like Rn). Up to 90% shielding for this sample (Rn between window and door).
 - Lowest shielding/result: Detector contact has about 3% bkgd shielding (near 0) due to high eff.
- Observed shielding is very inconsistent with Highest possibility, but could constrain lowest one for other samples.
- For results today, conservatively assume full range.

NOSV Copper Again.

	Activity	uBq/kg	Observed	
	W/shielding	Assume	Bkgd	
	w/sincluing	No bkgd		
Chain	Syst.	Shielding	reduction	
226Ra	<87	<27	~35 +/- 9%	
228Th	<75	<21	~20 +/- 10%	
228Ac	<68	<28	~26 +/- 17%	
40К	<1800	<200	~2 +/- 6 %	
235U	<44		1	
231Pa	<690 F	relimina	ry	
227Ac	<32			
234Th	<330			

Lee E.K, et al. Fall Meeting: Korean Physical Society (2019).
 Thiesse M, Scovell P, Thompson L, Appl. Radiat. Isot. (2022) 188:110384.
 Agrawal, A. et al. (AMoRE Collab.) 2024. Front. Phys. 12. (AMoRE Assay)

Recent Work

Rn Tent Construction

Rn Free air system failed in early 2023. Abandoned mid 2023.

Intsalled vinyl cover over array, secured carefully with tape and glue. (painstaking in tight space)

N₂ Flow: ~15 Lpm from chamber flush, avg 20 Lpm from cryodewar venting.

Rn outide Pb reduced from ~40 Bq/m³ to ~15. Not great. Consistent with poor flush* or Rn emanation. O2 level ~ 5% (out of ~21% normal) => poor flushing.

609 keV Rate for bkgd lower than Rn-free bgkd rate for Cu study. But, instable.

Mostly final panorama 9 9

*Estimates suggest 1--2cm dia. hole enough to harm flushing.

UNDERGROUND PHYSICS

MoO₃ Reprocessed from AMoRE LMO Crystal waste (melt).

- Inserted 8.036kg in CAGe.
- Two months Good data started with tent Sept '23
- No-sample Rn bkgd is equivalent to ~ 500 uBq/kg of ²²⁶Ra signal in sample.

ex: 10% total bkgd error -> 50 uBq/kg syst.

 Bkgd shielding by sample from 30 – 80% depending on E.

Continued Lead Survey for AMoRE-II

- As reported in AMoRE assay paper, lead bkgd is non-trivial.
- More samples measured with tent in 2024.
- ²²⁶Ra analysis uses April lead as bkgd for EXO and LP1b. No shielding correction!
- Rn instabilities:
 - Env monitor particle count, O2, Rn, but all were intermittent.
 - Data cuts for low flush rate, stabilized after April.
 - Not all fluctuations fully explained.
 - Lemer Pax 1a and 1b show discrepancy, but not quite identical samples.

See poster by S.Y. Park. AMoRe-rad paper Pb with bkgd shielding update.

	01		<u>ک</u>	
Chain	Mar. Lemer Pax 1a	Apr. Lemer Pax 2	EXO-200 Pb*	Aug. Lemer Pax 1b
Date				
(Array	Mar. 6	Apr. 15	Jun. 17	Aug. 26
DAQ start)	Pr			
				$1030 \pm$
²²⁶ Ra	<590	<97	400 ± 90	180
²²⁸ Th	<170	<120	<190	<140
²²⁸ Ac	<1500	<3300	<2700	<3000
⁴⁰ K	<260	<160	<120	<200
²³⁵ U	<600	<400	<1800	<3400
²³¹ Pa	<3900	<1900	<5400	<1900
²²⁷ Ac	<140	90 ± 30	<410	<100
²³⁴ Th	<3500	<1700	<2500	<2100

Unit: uBq/kg

*Thanks to EXO-200/nEXO collaborators A. Piepke and D. Cherniak at U. Alabama

O-ring sim/shields

- Goal study impact of O-rings to backgrounds
- Consider ability to further shield them.
- Added Cu insert (pink) to shield o-rings more.
- Conclusions:
 - O-rings don't contribute much*, Most for ⁴⁰K ~ 1/3 of total.
 - Shields reduce O-ring bkgd by 30% to 40%.
 - Overall weak improvement.

Ex: need 840 mBq/kg 226Ra in O-ring to explain Bkgd, Actual: around 15 to 30mB/kg. O-ring region redacted

Future at YemiLab (see LRT 2022 talk)

- CAGe is only remaining facility at YangYang.
- Moving to Yemilab 2025 or 2026.
 - Detectors will be thermal cycled and/or reconditioned.
- Will not rely on Rn-Free air systems.
- Planning to upgraded solid (acrylic) N2-flushed enclosure with access accommodations.
 - Rn level cannot be fully stabilized since source is environmental
 - Must be brought to insignificant levels.
 - Requires extremely good sealing and/or higher N2 flow -> Challenging.
- Bkgd shielding is no issue without bkgd.
 - Other backgrounds are already low enough for most measurements (excepting extreme cases like Copper).

Summary

- The CAGe has proven to be a valuable workhorse for high-sensitivity needs.
- Primarily used for AMoRE action-item purposes.
- Room for growth in Yemilab with Rn control upgrades, and future assay and physics searches.

Acknowledging HPGe Collaborators: K.I. Hahn, W.G. Kang, V. Kazalov, G.W. Kim, Y.D. Kim, E.K. Lee, M.H. Lee, S.Y. Park g, E. Sala, J.H. So. S.C. Yoon.

Purification Team, lead by O. Gileva,Machining, etc: C.S. Kang,And full AMoRE Collaboration (crystals, design, sim, etc)Apologies for any left out.