

Calculation and Mitigation of Neutron-Induced Backgrounds in Rare Event Search Experiments

Roberto Santorelli

Low Radioactivity Techniques (LRT2024) 04/Oct/2024

Signal vs Background

WIMP Direct detection - backgrounds

Backgrounds:

•
$$\beta$$
 : ER
• γ : ER $> 10^{10}$ times the signal

- α : higher energy depositions but degraded surface α and (α,n) reaction
- μ : materials activation above/under ground. Fast neutrons

Mitigation strategies:

- Shielding (active+passive), Fiducial volume, ER discrimination techniques, materials radiopurity
- Surface treatment, Rn daughter (Pb-210 Po-210) polishing, material radiopurity
- Deep UG labs, active Muon Veto

WIMP Direct detection: neutrons

neutrons can produce nuclear recoil in the WIMP search region of interest

> → <u>Potential irreducible</u> <u>background</u>

$$\frac{dR}{dE_R} = \frac{R_0}{E_0 r} e^{-\frac{E_R}{E_0 r}} F^2(q)$$

• $R_0 = \frac{2}{\sqrt{\pi}} \frac{N_A \rho_{\chi}}{A \cdot m_{\chi}} \sigma_0 \mathbf{V_0}$ • $\sigma_0 = \sigma_n \frac{A^2}{m_n^2} \left(\frac{m_{\chi} m_N}{m_{\chi} + m_N}\right)^2$

Particle physics Detector DM halo

Roberto Santorelli - Low Radioactivity Techniques (LRT2024) 04/10/24

target

10

5

E_R [keV]

Neutrons and neutrino physics

- Inverse beta decay in SNO+: The combination of the prompt neutron signal with the delayed capture can mimic events relevant for the antineutrino analysis.
- $0\nu\beta\beta$: Gammas produced by neutron capture can fall in the region $Q_{\beta\beta}$
- Low energy studies in DUNE: Potential source of background for supernova and solar neutrino studies

Neutrons production

Main processes contributing to neutron production:

- **Spallation** reactions from muons in the detector material and the rock
- □ Spontaneous fission: mainly from ²³⁸U, probability of about 5x10⁻⁷/chain (Generally dominates for high Z materials)

 \Box (α , n) reactions: Generally is dominant source for low Z-materials

(probability >10⁻⁴ / α -decay)

Depends on the alpha energy and on the target

• Wide spectrum in energy

Neutron yield calculation

$$Y_i(E_{\alpha}) = \frac{\eta_i}{\eta} \int_0^{E_{\alpha}} \frac{\sigma^i_{(\alpha,Xn)}(E)}{\varepsilon(E)} dE$$

 E_{α} is the initial energy of the α particle; η_i is the number density of nuclide *i*; η is the number density of the material; $\sigma^i(\alpha, Xn)(E)$ is the neutron production x-sec for the nuclide *i* $\varepsilon(E) = -\frac{dE}{dx}$ is the stopping power of the material

Simple and versatile tool provided to the community SaG4n (<u>http://win.ciemat.es/SaG4n/</u>)

"Neutron production induced by α-decay with Geant4", Nucl. Instrum. Methods A 960, 163659 (2020)

- Codes (SOURCES4C, NeuCBOT, SaG4n)
- Libraries (JENDL, TENDL...)

- Exploiting evaluated libraries (JENDL)
- Detailed geometries (actual geometry and border effects)
- Neutron transport, precise tracking
- Biasing techniques

Very challenging task

- Missing experimental data (truly evaluated cross-sections)
- Discrepancies between exp. results (differences in the setups or the corrections applied)
- Uncertainty on the theoretical models used to evaluate the (α, n) reactions
- Missing data for the correlated γ-ray emission

(α,n) white paper

2405.07952

White paper on (α, n) neutron yield calculations

D. Cano-Ott,¹ S. Cebrián,² M. Gromov,^{3,4} M. Harańczyk,⁵ A. Kish,⁶ H. Kluck,⁷ V. A. Kudryavtsev,⁸ I. Lazanu,⁹ V. Lozza,^{10,11} G. Luzón,² E. Mendoza,¹ M. Parvu,⁹ V. Pesudo,¹ A. Pocar,¹² R. Santorelli,^{1,4} M. Selvi,¹³ S. Westerdale,¹⁴ and G. Zuzel⁵

¹CIEMAT, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid 28040, Spain

²CAPA, Centro de Astropartículas y Física de Altas Energías, Universidad de Zaragoza, Zaragoza 50009, Spain

³Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119234, Russia

⁴Joint Institute for Nuclear Research, Dubna 141980, Russia
⁵M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Krakow, Poland

⁶Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A

⁷Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, 1050 Wien, Austria

⁸Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK

⁹Faculty of Physics, University of Bucharest, POBox 11, 077125, Magurele, Romania

¹⁰Laboratório de Instrumentação e Física Experimental de Partículas (LIP), 1649-003, Lisboa, Portugal

¹¹Universidade de Lisboa, Faculdade de Ciências (FCUL), Departamento de Física, 1749-016 Lisboa, Portugal

¹²Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, MA 01003, USA

13INFN - Sezione di Bologna, Bologna 40126, Italy

14Department of Physics and Astronomy, University of California, Riverside, CA 92507, USA

(Dated: Tuesday 28th May, 2024- 00:28, Version: F1.0)

Understanding the radiogenic neutron production rate through the (α, n) reaction is essential in many fields of physics like dark matter searches, neutrino studies, nuclear astrophysics and medical physics. This white paper provides a review of the current landscape of (α, n) yields, neutron spectra and correlated γ -rays calculations, and describes the existing tools and the available cross sections. The uncertainties that contribute to (α, n) yield calculations are also discussed with plans for a program to improve the accuracy of these estimates. Novel ideas to measure (α, n) cross sections for a variety of materials of interest are presented. The goal of this study is to reduce the uncertainty in the expected sensitivity of next-generation physics experiments in the keV-MeV regime.

CONTENTS

3

I. Introduction

alphan@ciemat.es

Multidisciplinar WG on (α, n) neutron yield studies

alphan@ciemat.es

Members of several DM experiments + Neutrino + Nuclear + IAEA:

- DarkSide-20k
- XENON
- LZ
- CRESST ...

Understanding the radiogenic neutron production rate through the (α, n) reaction is essential in many fields of physics like dark matter searches, neutrino studies, nuclear astrophysics and medical physics. This white paper provides a review of the current landscape of (α, n) yields, neutron spectra and correlated γ -rays calculations, and describes the existing tools and the available cross sections. The uncertainties that contribute to (α, n) yield calculations are also discussed with plans for a program to improve the accuracy of these estimates. Novel ideas to measure (α, n) cross sections for a variety of materials of interest are presented. The goal of this study is to reduce the uncertainty in the expected sensitivity of next-generation physics experiments in the keV–MeV regime.

Neutron yields calculated for light nuclei by applying different codes, (The numerical values are normalized to evaluated data from various alpha-beam measurements)

Excitation function for 40Ar(α, n) as calculated with TALYS 1.96 (*line*) based on default settings with the associated uncertainty (*band*) is based on sampling the input parameter space

Rejection / Mitigation of the neutron background

Multiplicity

~70% of neutrons produce multiple site events (MC)

Veto Rejection

Roberto Santorelli - Low Radioactivity Techniques (LRT2024) 04/10/24

Gd-doped acrylic

- JINST 19 (2024) 09, P09021
- Gadolinium oxide nanoparticles dispersed in poly(methyl methacrylate) (PMMA) matrix.
- A few percent of gadolinium (Gd) by weight
- Key advantage: capture cross-section

Parameter	Value
Gd concentration (weight)	0.5% < Gd < 1%
Gd homogeneity	$\simeq 50\%$
Transparency of the hybrid Gd-PMMA material	not necessary
Machinable	yes
Stable at 87 K	yes
Thickness ^a	~ 17 cm
Maximum size ^a	sheets of $\sim 4 \text{ m} \times 2 \text{ m}$
238 U, 235 U, 232 Th activity of Gd ₂ O ₃	< 20 mBq/kg
γ contaminants activity of Gd ₂ O ₃	< 2 mBq/kg
Amount needed ^a	about 20 t

- Issues: Operation in liquid argon at 87 K
 - Full containment of Gd (no dispersion into the environment)
 - Homogeneous distribution of gadolinium / sufficient concentration
 : neutron tagging inefficiency < 10⁻⁶
 - Scalability / cost / radioactivity

Isotope	A [mBq/kg]
²³⁵ U	< 0.64
²³⁸ U/ ^{234m} Pa	< 17
²³⁸ U/ ²²⁶ Ra	< 0.26
²³² Th/ ²²⁸ Ac	0.4 ± 0.2
²³² Th/ ²²⁸ Th	0.4 ± 0.2
⁴⁰ K	14 ± 3
¹³⁷ Cs	< 0.24

Roberto Santorelli - Low Radioactivity Techniques (LRT2024) 04/10/24

Mitigation: Material selection

- Carbon (¹³C 1.06%): liquid scintillators, plastics (acrylic, polyethylene, nylon, PTFE), SS
- Oxygen (¹⁷O 0.03% and ¹⁸O 0.2%): water liquid scintillators, plastics and rock
- Nitrogen (¹⁴N 99%): plastics, wavelength shifters, fluors used in liquid scintillators
- Aluminum (²⁷Al 100%): resistors, ceramics
- Fluorine (¹⁹F 100%): component of PTFE
- Beryllium (⁹Be 100%) present in wires
- Titanium & Copper: used in cryostats, shielding, support structures,
- Silicon: present in quartz, glass, light sensors

Mitigation: Radiopurity

Potential alpha sources:

- U & Th chain decays in the target material + detector's structure
- ²¹⁰Po from Rn decay plating onto surfaces (accumulation over time, long lived ²¹⁰Pb)
- Rn (freshly introduced or emanated)

Strategy:

Equilibrium in the U-238 chain

ICPMS

- Very little mass needed
- Relatively fast
- Digestion
- Destructive
- Only U-238 (Th-232)

Radiochemical

- Little mass needed
- Relatively fast
- Digestion
- Destructive
- Only Po-210 (Pb-210)

HPGe

- Larger mass needed
- Slow
- Non-destructive
- Gamma activity (⁴⁰K+...)

(α,n) on Argon

Alpha-Particle Bombardment of A^{36} and A^{40} ^{†*}

R. B. SCHWARTZ,[†] J. W. CORBETŢ[§]₈ AND W. W. WATSON Sloane Physics Laboratory, Yale University, New Haven, Connecticut (Received August 15, 1955)

Gas targets (130-kev thick) of natural argon (99.6%, A^{a}_{γ} , 0.34%, A^{a}_{γ}) and of argon enriched in A^{aa} (97.4%, A^{aa}_{γ} , 2.5%, A^{aa}_{γ}) have been hombarded with 7.4-Mev alpha particles from the Yale cyclotron. Protons and neutrons at 90° to the incident beam have been studied by means of Sy_{μ} liftord C-2 emulsions, placed 16 cm from the target. The ground-state Q-value for the $A^{aa}(x, \beta)K^{aa}$ reaction is -1.28 Mev, with excited states at 2.50 and 2.57 Mev. The ground state Q for $A^{aa}(x, \beta)K^{aa}$ reaction is -3.36 Mev, with excited states at 0.65 and 1.18 Mev. The cross sections for these two reactions, as well as for the $A^{aa}(x, \mu)Ca^{aa}$ reaction, have been measured and are found to be in general agreement with the predictions of simple compound-nucleus theory.

INTRODUCTION

In 1924, Rutherford and Chadwick¹ reported particles emitted from argon under alpha bombardment. This reaction was then reinvestigated by Pollard and Brasefield,² Buchanan,⁴ and others using natural argon (99.6% A^a, 0.34%, A^{ab}) and argon considerably enriched in A^{ab}, However, since no protons were ever observed in these later experiments, this is the only part of Rutherford's early work in this field which has not hear varified by later more avect measurement. Our

 the difficulty in handling gas targets, (2) the low alpha-beam currents available, (3) the fact that the most abundant isotope (A^{ay}) has a low cross section, (4) the negative Q-values for these reactions, resulting in low-energy protons which were difficult to detect.

ALPHA-PARTICLE BOMBARDMENT

Argon gas targets were bombarded with 7.4-Mey alpha particles from the Yale cyclotron. The target

Cross section (millibarns) 0.26 8.5 33.0

Reaction

 $\mathrm{A}^{40}(\alpha,p)\mathrm{K}^{43}$

 ${f A^{36}(lpha,p)K^{39}\over A^{40}(lpha,n)Ca^{43}}$

 $(\alpha,n\gamma)$ might be subdominant in most of the cases with respect to (α,n) but is still very relevant for many experiments

The correlated gamma emission is fundamental for understanding the background in Dark Matter

Conclusions

- Neutron background in rare events search experiments: big headache
- Different codes used for the neutron yield calculation with evaluated libraries
- White paper recently published (comparison of the codes, uncertainties ...etc)
- New data needed: some of them are fundamental for the next generation of experiments -> ⁴⁰Ar(⁴He,n)⁴³Ca
- Missing $(\alpha, n\gamma)$ data

dziękuję

Bonus Slides

Neutron-yields

Values for 1 ppb Th-232 and U-238 (U-235 with its natural abundance)

Roberto Santorelli - Low Radioactivity Techniques (LRT2024) 04/10/24

Radiogenic neutrons from detectors materials

Strategy:

Extensive material assay campaign

 \succ (α ,n) n-yields calculations

• U-238, Th-232, U235... contamination

- Codes (SOURCES4C, NeuCBOT, SaG4n)
- Libraries (JENDL, TENDL...)

MC simulation

• G4, FLUKA...

Typical elements

> Avoid Be and B, F (as much as possible)

Resistors

Target

Mean energy (MeV)

1.381.77

- PCB \rightarrow C, N, O... •
- Acrylic \rightarrow C, O
- Teflon \rightarrow C, F
- Mechanical parts \rightarrow SS, Cu, Ti...
- Sensors \rightarrow Si...
 - \rightarrow Ar, Xe, Ge....

 \rightarrow Al, N, B (+Si, Mg...)

Roberto Santorelli - Low Radioactivity Techniques (LRT2024) 04/10/24	

²³²Th

Material

Stainless steel

Material	²³² Th	²³⁸ U	²³² Th		
Stainless steel cryostat	0.89	1.34	0.22	0.11]
Titanium cryostat	0.77	5.47	0.19	0.44	
					-
	V	$\left(n \left c \right r \right)$			

	Activit	y (mBq/kg)	Activity (ppb)			
Material	²³² Th	²³⁸ U	²³² Th	$^{238}\mathrm{U}$		
Stainless steel cryostat	0.89	1.34	0.22	0.11		
Titanium cryostat	0.77	5.47	0.19	0.44		

23511

Titanium	5.38×10^{-12}	8.37×10^{-13}	1.42×10^{-11}	2.04×10^{-11}	
					-

 1.62×10^{-12} 3.58×10^{-14} 6.99×10^{-13} 2.3×10^{-12}

23811

Total (n/s/g)

DarkSide materials DB structure

Online database that centralizes the full assay process

- New material or component? Assay request!
- Sample allocation depending on available mass and needs
- Information on sample/assay status
- Storage and organization of results.

DarkSide materials Web interface

Online database that centralizes the full assay process

• New material or component? Assay request!

Information on sample/assay status

٠

Sample allocation depending on available mass and needs

DB: Woh-interface

29

ID	Report	Name	Reference	Method SNULAB),	Sample	⊔ Date	²²⁷ Ac	²²⁸ Ac	²¹⁰ Po	²¹⁰ Po, gross alpha activity	²²⁶ Ra	228Ra	220Rn	222Rn	46SC	Th	²²⁸ Th	²³² Th	²³⁴ Th	44TI
2124	289	Gadolinium sulfate 301 Decision pending	DarkSide-20k	HPGe GeOroel (Iulian Catalin Bandac, LSC CANFRANC),	complete	2019-08-27		387±24 [mBq/kg] (1 sigma)			9.4±1.4 [mBq/kg] (1 sigma)						274±14 [mBq/kg] (1 sigma)			
2121	288	OPA838 284 More assays needed	PDM module	Polonium-210 chemical extraction (Grzegorz Zuzel, IF UJ),	complete	2019-08-27			5.64±0.69 [Bq/kg] (1 sigma)											
2112	286	Harwin clips (clamp) 272 Satisfactory	PDM module	HPGe GeMPI (Matthias Laubenstein, LNGS, INFN),	complete	2019-08-13					30±9 [mBq/kg] (1 sigma)	<36 [mBq/kg] (2 sigma)					<27 [mBq/kg] (2 sigma)		<0.95 [Bq/kg] (2 sigma)	
2105	286	OPA838 284 More assays needed	PDM module	HPGe GeMPI (Matthias Laubenstein, LNGS, INFN),	complete	2019-08-13					77±8 [mBq/kg] (1 sigma)	25±10 [mBq/kg] (1 sigma)					19±6 [mBq/kg] (1 sigma)		<0.95 [Bq/kg] (2 sigma)	
2119	287	Silver loaded epoxy EJ2189 294 Decision pending	PDM module	HR-ICP-MS (Stefano Nisi, LNGS, INFN),	complete	2019-08-13										850±300 [ppt] (30 %)				

Background budget spreadsheet

R.A. budget spreadsheet

Storing the results of the samples, materials composition, contribution to the bkg ...

(α,n) neutron background

γ event rate(VETO+TPC)

Roberto Santorelli - Low Radioactivity Techniques (LRT2024) 04/10/24

Event discrimination technique in Ar

