

GeMPI-Neo A next generation screening station

Nicola Ackermann

- Max-Planck-Institut für Kernphysik, Heidelberg, Germany

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

The GeMPI detectors

- 4 setups with highly sensitive Germanium spectrometers (active mass: 2.2 – 2.4 kg) (3* MPIK, 1* LNGS in close collaboration)
- Used for screening of materials for low background experiments
- Located at a depth of 3800 m w.e.
- <u>Sensitivity for U and Th</u>:

 $\sim 10 \,\mu Bq/kg$

Basic detector design:

- 20 cm lead shield
- 5 cm copper shield
- Sample chamber flushed with Nitrogen gas
- Ge diode inside ultra low background copper cryostat

Background rate in low background material screening – a small comparison

Detector	Location	Background rate in 40 – 2700 keV [cts/d/kg]	
GeMPI 1	LNGS, Italy	142 ± 1	
GeMPI 2	LNGS, Italy	38 ± 1	
GeMPI 3 **	LNGS, Italy	24 ± 1	
GeMPI 4	LNGS, Italy	71 ± 1	
GeOroel	Canfranc, Spain	103 ± 1 *	
Gator	LNGS, Italy	65 ± 1	
GeRysi	Canfranc, Spain	~ 38	
GeMSE	Switzerland	164 ± 2 *	
BUGS	Boulby Underground Laboratory, UK	90 ± 9	
Ge02	Kamioka Observatory, Japan	~ 84	
* In 100 – 2700 keV ** latest GeMPI to be built			

Background of current GeMPIs

Updated shield design – MC simulations

- Goal: Decomposition of full Bkg. Spectrum
 → find possible areas of improvement
- Use MaGe based on Geant4, developed for Majorana and Gerda experiment
- Major background sources to simulate:
 - Cosmic ray muons
 - Neutrons (muon-induced and from nat. radioactivity)
 - Contaminations of shielding materials (Th232, U238, Co60, K40, Pb210 ...)

Muon Veto for GeMPI-Neo?

Muons only contribute to a small part of the GeMPI background
 Muon veto system in future GeMPI generations not necessary

Count rate from simulations
[40, 2700] keV
(cts/d/kg)Percentage of total bkg. rate
[GeMPI 3]
(%) 0.8 ± 0.1 3.3 ± 0.6

Neutron shielding for GeMPI-Neo?

The neutron shield

- Simulation of possible neutron shielding
- PE (or borated PE) as possible materials

RESULT:

- At 15 cm thickness: neutron contribution comparable to muon contribution
- No significant influence of boron content on effectiveness of shield

Material contaminations: Pb210

	GeMPI 1	GeMPI 2	GeMPI 3	GeMPI 4
Pb210 Cont. (Bq/kg)	~6	~3	~1.7	~6
Contr. to Bkg. [40, 2700] keV (cts/d/kg)	45 ± 4	23 ± 2	13 ± 1	45 ± 4
Percentage of total bkg. rate (%)	63 ± 5	60 ± 5	54 ± 4	69 ± 6

LRT 2024

Material contaminations: Pb210

 Pb210 in lead shield is biggest contributor to background despite copper shield 	 Simulations show that Pb210 in first two cm of the lead shield have the biggest impact
ightarrow need different shield design to reduce contribution	→ Replace first two cm of lead shield with extremely pure lead

Layer	Percentage of total Pb210 contribution coming from layer (%)
0 – 1 cm	85 ± 4
1 – 2 cm	11 ± 1
2 – 3 cm	3 ± 1
3–4 cm	< 1
4 – 5 cm	< 1

New shield design

- Major improvements:
 - 15 cm neutron shield implemented in walls of new STELLA laboratory in LNGS
 - New innermost 2 cm layer of roman lead
 - Include second Germanium crystal to double sensitivity
 - Both cryostats can be moved to adjust for sample geometry

Goals for background rate and sensitivity

Ideal scenario:

Current status

- Materials are all at MPIK
- Test setup being built at MPIK Uses dummy detectors to test moving mechanism
- Refurbished underground aged crystals (in new cryostats) perform well
- Installation at LNGS soon, followed by commissioning

Summary and Outlook

- Simulation of background components of GeMPI shield:
 - Pb210 in lead shield is main background source (~60%)
 Muon contributions are very small (1% 3%)
 Neutrons contribute up to 15%
- Consequences for GeMPI-Neo:
 - 2 cm inner layer of very pure lead to reduce impact of Pb210 in outer lead 15 cm neutron shield integrated in the walls of the laboratory

 - no muon veto necessary
 - Background count rate of 15 cts/d/kg between 40 keV and 2700 keV seems feasible (GeMPI 3: 24 +- 1 cts/d/kg)
 - Addiditionally a second Ge crystal will be included in the next GeMPI detector

Current status:

- New crystals perform wellTest setup being built at MPIK