

Reduction of radon in xenon-based experiments to search for rare events

Low Radioactivity Techniques (LRT2024), Kraków, Poland, Oct 1-4, 2024

Christian Weinheimer^{*} – Institute for Nuclear Physics, University of Münster, Germany * member of XENON, DARWIN/XLZD, technical member of nEXO , *PI of ERC AdG LowRad*

Outline:

- Motivation
- Different radon mitigation strategies
- Cryogenic online distillation

Goals of ERC Advanced Grant "LowRad"

erc

Conclusions

living.knowledge

DM & $0\nu\beta\beta$ searches with liquid noble gas detectors rather different energy scales, but similar background enemies to fight

from LZ, see talk by P. Brás at XeSAT2023

Limiting backgrounds in rare event detectors

Expected dark matter scattering or $0\nu\beta\beta$ rate:

1 - 10 events per 10t and year

⇒ Profit only from larger experiments if the experiment remains background-free

Most background problems solved by

- going underground
- careful material screening & selection
- extra shieldings & vetos

Limiting backgrounds in noble gas DM detectors

Expected dark matter scattering or $0\nu\beta\beta$ rate: 1 - 10 events per 10t and year

⇒ Profit only from larger experiments if the experiment remains background-free

Most background problems solved by

- going underground
- careful material screening & selection
- extra shieldings & vetos

Two remaining backgrounds:

- solar neutrinos, non-shieldable
- intrinsic radioactive noble gases:
 - ⁸⁵Kr, ²²²Rn and progenies, (³⁷Ar, ³⁹Ar, ¹³⁶Xe)

β-decays matter for nuclear recoil search, even for dual phase Xe TPCs

100

cS1 [PE]

C. Weinheimer – Radon reduction for xenon-based experiments – LRT 2024, Kraków, October 3, 2024

Universität Münster

A closer look to ⁸⁵Kr and ²²²Rn with its progenities

Why: intrinsic noble gas contaminants ⁸⁵Kr and ²²²Rn (→ ²¹⁴Pb) (as well as calibrating isotopes, e.g. ³⁷Ar)

- \succ leakage events from the low energy β -spectrum contaminate ROI for dark matter WIMP search
- > searches for new physics inside the electronic recoil spectrum only possible with low levels of impurities

85Kr: $1 - 2 \cdot 10^{-11}$ in ^{nat}Kr, man-made

Universität Münster

²²²Rn: $t_{1/2} = 3.8$ d, continuously emanating from detector materials,

- Background from β -decay of ²¹⁴Pb which cannot be identified by accompanying α -decay
- Background from γ -decay of ²¹⁴Bi for $0\nu\beta\beta$ decay searches if not fully BiPo-tagged

Threefold way to ultra-low radon concentration in xenon Universität

Avoid radioactive noble gas right from the beginning 1) ²²²Rn: Screen material, check for low ²²²Rn emanation

Mitigation 1)

- ...

²²²Rn: comes from materials:

- coating,

Münster

- detector design (hermetic, Xe ice, ...),

Threefold way to ultra-low radon concentration in xenon

- 3) Active removal of radioactive noble gas from detector by using different properties of Kr/Xe/Rn:
 - a) Diffision: utilize different ad-/desorption times on porous materials continuous adsorption and desorption processes depending on temperature, mass, charge radii of noble gas atoms, Van der Waals forces, ..

 \rightarrow different drift times, chromatography

Universität Münster

- b) Cryogenic distillation: utilize different vapour pressures (volatility of the different noble gases)
- c) Virtual removing (offline tagging) of radon-induced background: principle: [XENON] PRD 110 (2024) 012011 recent LZ offline-tagging result, reported at TEVPa 2024: 3.9 μBq/kg → 1.8 μBq/kg identifying ²¹⁴Pb decay by previous ²²²Rn and ²¹⁸Po decay locations when applying very low convection flows in the LXe

C. Weinheimer – Radon reduction for xenon-based experiments – LRT 2024, Kraków, October 3, 2024

this talk

C. Weinheime

LZ: In-line Radon reduction system

- reduce ²²²Rn background from in warm parts only (feedthroughs, cables, etc.)
 - i. tiny fraction of entire volume: 1 slpm (GXe) : 500 slpm (LXe)
 - ii. expected to contribute ~50% of Rn burden in TPC
- not set up to purify all 10 t of LXe
- sequestration of atoms in activated carbon trap until most ²²²Rn nuclei decay
 - i. chromatographic separation: v(Xe)/v(Rn) (-85 C) \approx 1000
- to obtain reduction of 90% (10x), sequestration time \geq ln(10)· τ_{Rn} = 12.7 days

courtesy: Wolfgang Lorenzon University of Michigan

Example: Rn reduction from air:

Universität Münster

- Air diffuses through a cold activated carbon column.
- Radon diffuses more slowly through the column than air, so that the column is closed before the radon breaks through.
- The closed column is then purged backwards with air low in radon.
- A two-column system allows continuous operation.

Rn reduction from xenon by a VSA:

- Similar, but xenon gas high in Rn needs to be recovered by collecting it at the input.

M. Arthurs et al., arXiv:2009.06069

Cryogenic distillation for removing noble gas impurities such as ⁸⁵Kr, ²²²Rn (and ³⁷Ar, ³⁹Ar)

Application of the different separation methods at Xe DM experiments Universität

Chromatographys:

Münster

Continuous adsorption & desorption processes depending on temperature, mass, charge radii of noble gas atoms, Van der Waals forces, ...

krypton

Cryogenic distillation:

Making use of the different vapor pressure essentially depending on the mass of the different noble gas elements

XENONnT:

Kr: 50 ppq, nearly sufficient for XLZD/DARWIN ²²²Rn <1 μ Bq/kg, equal to v_{solar} in [1,10] keV

Radon removal by cryogenic distillation at XENONnT

Novel radon removal system for XENONnT

Design parameters:

- Target flow: 72 kg/h (200 slpm)
- Requires 1 kW cooling power at top provided by LN₂
- LXe inlet and outlet require 2 kW cooling power

Thermodynamic concept:

- Clausius-Rankine cycle with phase changing medium xenon
- Reboiler acts as heat exchanger to liquefy Rn-depleted GXe with the stored Rn-enriched LXe
- Compressor acts as heat-pump
- Reduce required external cooling power from **3 kW to 1 kW**
- Drastically reduce nitrogen consumption and electrical heating power

Low radon compressor JINST 16 P09011 (2022), based on EPJ C78 604 (2018) Low radon heat exchangers JINST 17 P05037 (2022)

(2a

Eur. Phys. J. C 82, 1104 (2022)

Radon removal system

XENONnT – Novel radon removal system

XENON

Cryogenic distllation system - key parameter:

- liquid xenon inlet (and gaseous Xe inlet) and outlet
- Flow of 0.4 l/min LXe = 200 SLPM \approx 70 kg/h

Universität Münster

- reduction by factor of 2 for sources within detector by LXe extraction
- ➤ another reduction factor 2 for warm Rn sources by GXe extraction → as low as solar v-induced ER bg !

Radon concentration at XENONnT

Proof of basic removal concept: Eur. Phys. J C77, 358 (2017) Design of XENONnT system: Eur. Phys. J. C82, 1104 (2022)

Low radon and low internal radioactivity for dark matter and rare event xenon detectors ERC AdG LowRad (PI: C. Weinheimer)

Goal: Develop and demonstrate the Kr and Rn removal technologies for the next generation dark matter experiment DARWIN/XLZD with a sensitivity down to the neutrino fog (and for more channels, e.g. $0\nu\beta\beta$) Challenges/tasks for reaching background rates by ⁸⁵Kr and ²²²Rn being 10-times smaller than by ν_{solar}

- Continuous/online nearly lossless ⁸⁵Kr removal (30 ppq ^{nat}Kr)
- Another factor 10 in ²²²Rn reduction (0.1 μBq/kg), factor 6 by cryogenic distillation
- Use fact, that cryogenic distillation enhances concentration on one side → sensitive online diagnostics
- R&D for novel purification methods
- Pave the way for an all-in-one purification & distillation system
- Complete purification & distillation demonstrator

Reach: "less than 1 Radon atom in 160 mol of xenon"

throughput:

750 kg/h (final system)

Demonstrator

۲

- Radon-free heat exchangers
- 2nd Xe heat pump cycle •

Universität Münster

With online **Rn decay monitor** •

Final system

- Should be integrated with **purification system** for removal of electronegative impurities
- With nearly lossless online Kr removal system ۲
- Installed in a water shield to avoid Xe activation •

R&D currently focusing on:

- **Kr-concentrator** for an online distillation system
- Demonstration of a **Xe heat pump** concept
- **Rn-decay detectors** for online monitoring

Design of a heat pump cycle

- Investigating several process gases including Xe
- Need to supply the required heating and cooling power at reboiler and condenser (roughly 10 W per 1 slpm)
- Design using custom numerical calculator for heat pump concepts/heat cycles

erc

Tooltip

LowRad Xe heat pump demonstrator

Conclusions

- Clear need for removal of radioactive noble gases from xenon for search for dark matter and $0\nu\beta\beta$: 85 Kr, 222 Rn and progenies, (37 Ar, 39 Ar, 136 Xe) (some overlap with LAr dark matter experiments)
- Charcoal chromatography can reach the low concentrations but quite some effort \rightarrow will stay very important for diagnostics and very dirty samples, but maybe even more by LXe Rn removal by a "swing" system and/or by finding ideal porous material
- Cryogenic distillation is a robust and efficient scalable method yielding ultralow concentrations at XENONnT: ⁸⁵Kr (\approx 100 ppg ^{nat}Kr) and ²²²Rn (\approx 1 µBg/kg) Should be the default method for DARWIN/XLZD (and nEXO) after all primary mitigation strategies have been explored: material screening and ²²²Rn emanation tests as well as selection, coating, apparatus design
- LowRad ERC AdG project: developing the cryogenic distillation technology for DARWIN/XLZD (⁸⁵Kr, ²²²Rn) Goals: full cryogenic heat pump for large scale, in situ diagnostics, nearly lossless Kr removal, ...

This research at U Münster is funded by

Bundesministerium für Bilduna

