

t_}.0 FadE d

iY 7^ /]Tb

H%mg+

1} Z

k;nihW

ASV %2

dvs ny

oī (=>

c[

2N = E

R:g D

/ | ~ X I

ee ba D?

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: March 25, 2024 ACCEPTED: June 18, 2024 PUBLISHED: September 2, 2024

Abatement of ionizing radiation for superconducting quantum devices

B. Loer^(a),^{*a*,*} P.M. Harrington^(b), ^{*b*} B. Archambault,^{*a*} E. Fuller,^{*a*} B. Pierson,^{*a*} I.J. Arnquist^(a), ^{*a*} K. Harouaka,^{*a*} T.D. Schlieder^(a), ^{*a*} D.K. Kim,^{*c*} A.J. Melville^(a), ^{*c*} B.M. Niedzielski^(a), ^{*c*} J.L. Yoder,^{*c*} K. Serniak^(b), ^{*b*,*c*} W.D. Oliver^(b), ^{*b*} J.L. Orrell^(a), ^{*a*} R. Bunker,^{*a*} B.A. VanDevender^{*a*} and M. Warner^{*a*}

^aPacific Northwest National Laboratory,

902 Battelle Boulevard, Richland, WA, U.S.A.

^bResearch Laboratory of Electronics, Massachusetts Institute of Technology,

77 Massachusetts Ave, Cambridge, MA, U.S.A.

^cMIT Lincoln Laboratory,

244 Wood Street, Lexington, MA, U.S.A.

PNNL is operated by Battelle for the U.S. Department of Energy

Overview

- Ionizing radiation causes faults in superconducting qubits
- Worse, may be correlated across large numbers of qubits, defeating error correction schemes
 - Examine the relative importance of
 - Cosmic ray secondaries
 - Environmental gamma background
 - Radioactivity inside the dilution refrigerator
 - Predict performance if devices operated in the Low Background Cryogenic Facility (LBCF), a shielded dilution refrigerator in PNNL's Shallow Underground Laboratory

2

dvs ny

R:g D

dvs ny

oī (=%^

iل ۱_f

ONCE W

R:g D

/ | ~ X I

Sources of ionizing radiation

- External sources
 - Gammas
 - Cosmic ray secondaries (muons)
- Most mass of the fridge is:
 - Copper, gold plating
 - Aluminum (radiation shields)
 - Steel (Vacuum flange)
 - Mumetal (magnetic shielding)

assav

Low Radioactivity Moderate or Variable Radioactivity High Radioactivity/Rate

Most high radioactivity materials are very small mass BUT Many of them are very close to the devices

- Packaging and readout:
 Silicon chips
 - Wirebonds
 - Indium (bump bonds)
 - Epoxy, varnish
- FR4, ceramics (PCBs)
 - BeCu electrical connectors
 - Copper

t_}.0 FadE

H%mg•

ba D?

T!)~S A5vi%z

k;nihW

dvs ny

οī (-<u>≥</u>^

c[

iK l

ON E W

R:g

/ | ~ X I

Assay of critical components

- Qubits (ICP-MS)
 - Fabricated at MIT-Lincoln Labs, each chip 2.5x5x0.3 mm
 - 3 replicates measured, only 1 above detection limit
 - Not significantly any dirtier than pure silicon

Sample	²³² Th (mBq/kg)	²³⁸ U (mBq/kg)	Ref.
Qubits	0.0065 ± 0.0012	0.014 ± 0.003	This work
Silicon	< 0.0073	< 0.011	[38]
OFHC Cu	0.0001-0.01	0.001-0.05	[39–41]

4

dvs ny

οī (

Assay of critical components

• Qubits (ICP-MS)

- Cryogenic SMA connector and semirigid coax cable (ICP-MS)
 - Only metal parts digested (e.g. not PTFE dielectric)
 - Cables fairly clean, connectors dirty (likely BeCu)

			total sample	measured	mass fraction	²³² Th		²³⁸ U				
PNNL ID	Description		mass [g]	mass [g]	measured	milliBq/kg	± inst	milliBq/kg	± inst			
			normalized to metal mass									
2023-10-01	coax connector metal	r1	2.9040	2.6336	0.907	1430	20	21000	2000			
		r2	2.8953	2.6432	0.913	2240	140	25000	2000			

			total sample	measured	mass fraction	²³² Th		²³⁸ U		
PNNL ID	Description		mass [g]	mass [g]	measured	milliBq/kg	± inst	milliBq/kg	± inst	
2023-10-02		r1	0.1429	0.1056	0.739	<0.130		<0.39		
	coax cable metal	r2	0.1872	0.1334	0.713	<0.152		<0.42		
		r3	0.1552	0.1111	0.716	<0.16		<0.49		

t_}.0 FadE/d

H%mg•

b@ D? <u>k</u>;nihW

I T!)~S SA5v|%z

dvs ny:

οī (=≥^

c[

iK l

P; CNEEw

R:g D

/ | ~ X I

Assay of critical components

- Qubits (ICP-MS)
- Cryogenic SMA connector and semirigid coax cable (ICP-MS)

 Low loss ceramic PCB substrates Rogers TMM10 and RO4350B (HPGe)

Sample	Mass	⁴⁰ K	²⁰⁸ Tl	²¹² Pb	²¹⁴ Bi	²¹⁴ Pb	²²⁶ Ra	²¹⁰ Pb
TMM10	200 g	17.3(9)	1.51(6)	5.5(3)	28.9(4)	25.4(8)	29(2)	-
RO4350B	30 g	9.1(8)	4.9(2)	15.1(9)	-	11.2(4)	8(4)	11(2)

6

FadEZd						dir										
] A E U ! C 9				DU			IY	al	Jau	,NY		uII	U	Component	Material	Mass
1Y / ~ 1 / 1Th																(kg)
nc-o. 77K	\sim			m		e								Cosmic rays (chip horizontal)		
H%m = +	Pacifi	ic									Ri	ll of		Cosmic rays (chip vertical)		
1} Z G	North	west												Ambient Gammas		
ee q	NATIONAL L	ABORATORY								•	100	- t - r		Ceramic PCB interposers	-1	790
ba D?	adı	oac	XIVI	tv a	ass	sav	S			,	- m	aler	lais		alumina PO4250P	780 mg
L'and bli		Isot	tone conc	entration	s (mBa/		-		_ •						TMM10	570 mg
Material	²³⁸ U	²³² Th	⁴⁰ K	⁶⁰ Co	¹³⁷ Cs	210 Pb ^a	Act. ^b	Ref.						Coax connectors on nackage	110100110	550 mg
copper	0.070	0.021	0.023	0.002	-	40	6.6	[46, 50, 51]	1					inside (line-of-sight)	SMA	$10 \times 2.3 \sigma$
lead	0.04	0.005	0.1	-	-	200000	-	[45, 52, 53]	1					outside (no line-of-sight)	SMA	$10 \times 2.3 \text{ g}$ $10 \times 2.3 \text{ g}$
steel	130	2.4	10	8.5	0.9	-	-	[46]						Bumn bonds	indium	20 µg
aluminum	66	200	2100	-	-	-	-	[46]						All other components (itemiz	ed below)	20 45
gold	74	19	150	-	-	-	-	[45, 54]				1		Fridge stages and shields	<i>cu ocion)</i>	
brass	4.9	3.5	40	-	2.6	40	6.6	[49, 55]	Sir	nula	ated	hit		MXC stage	Cu	4.6
Kapton	10	20	60	3	-	-	-	[47, 55]	• · ·					CP stage	Cu	3.3
Al bonding wire	110	370	100	-	-	-	-	[45]	۵ff	icier	ncie	S		Still stage	Cu	5.9
mumetal	20	7	15	-	-	-	-	[56]				5		4K stage	Cu	8.7
isolator	240	190	2000	Sourc	e locati	on		²³⁸ U	²³² Th	⁴⁰ K	⁶⁰ Co	¹³⁷ Cs	²¹⁰ Pb	50K stage	Cu	5.1
HEMT Kel filter	1000	890	10000					1			n : 1	1 / 10		Vacuum flange	steel	21
K&L filter	200	23 52	140							Hit ef	ficiency, 1	/g/s/Bq	115-	Still can	Cu	6.3
allenuator	5000	52	600	Bump	bonds			8.3E+2	6.6E+2	5.4E+1	5.6E+1	6.4E+1	¹¹⁵ In: :	4K can	Al	4.1
Rogers TMM10	29000	5500	17000	Interp	poser bo	ard		7.3E+0	5.2E+0	1.5E+0	3.1E-1	8.3E-1	1.5E+0	50K can	Al	5.7
Rogers RO4350B	11000	15000	9000	Packa	ıge			7.3E-2	6.0E-2	1.2E-2	2.1E-2	9.8E-3	8.0E-3	Vacuum can	Al	21
SMA connector	23000	1800	-	Packa	ige Con	nector In	iside	8.4E-1	5.2E-1	1.8E-1	5.3E-2	7.5E-2		Gold plating	gold	0.5
coaxial cable	0.4	0.15	-	Packa	ige Con	nector O	utside	1.4E-2	1.7E-2	9.4E-4	1.4E-2	4.8E-3		Experiment readout		
qubit chip	0.014	0.0065	-	Exper	riment s	tage		7.3E-4	1.0E-3	4.5E-5	9.1E-4	2.3E-4	2.5E-6	Wirebonds	Al/Si	$10 \times 0.1 \text{ mg}$
Indium	115 _{In} .	250000		Exper	riment s	hield		2.2E-4	2.8E-4	1.3E-5	2.5E-4	8.1E-5	0.0E+0	Package	Cu	0.1
maran	111.	230000		Mixin	ng Chan	nber Stag	ge	1.2E-4	1.6E-4	8.8E-6	1.5E-4	4.4E-5	1.8E-7	Package Fasteners	brass	10×0.3 g
11				Cold I	Plate St	age	-	1.7E-5	2.3E-5	1.1E-6	2.3E-5	6.8E-6	1.4E-8	Cryo filters	K&L	10×15 g
/ ~ X 1 5				Still S	Stage	e		7.3E-6	9.3E-6	5.8E-7	9.5E-6	2.6E-6	4.8E-9	Closest coax cable	semirigid	$10 \times 10 \text{ cm}$
K3k				4K St	age			1.6E-6	2.3E-6	1.3E-7	2.7E-6	4.1E-7	0.0E+0	Coldfinger	Cu	1.8
5 - 18 - 18 - 18 - 19 - 19 - 19 - 19 - 19				50K S	Stage			4.6E-7	7.4E-7	2.1E-8	8.2E-7	1.9E-7	3.1E-9	Inner shield	-	
g o				Vacuu	um Flan	oe		2.6E-7	3 3E-7	1 5E-8	4 0E-7	8 6E-8	0.0E+0		Cu	1
				Still C	lan I kun	50		6.0E-5	8 1E-5	4 3E-6	7.4E-5	2.1E-5	7.5E-8		Al	1
					an			3.0E 5	3 OF 5	2 1E 6	3.6E 5	1 1E 5	0.7E 0	MYODOG N	mumetal	1
				4K Ca	all 	lan		2502-3	3.7E-J	2.1E-0	3.0E-3	0.10 4	0.70.0	MXC DC feedthroughs	BeCu	100 pins
=				Lower	F DUK C	an		2.5E-5	3.1E-3	1.8E-0	2.9E-3	9.1E-0	9./E-9	MAC RF feedinroughs	5MA	10 × 2.5 g
				Upper	r 50K C	an		9.3E-7	1.3E-6	3.6E-8	1.5E-6	4.4E-7	0.0E+0	MXC isolators		10 x 5 g
				Lower	r Vacuu	m Can		1.7E-5	2.3E-5	1.4E-6	2.1E-5	7.6E-6	0.0E+0	AV LIENT amount form		10 × 145 g
				Upper	r Vacuu	m Can		6.3E-7	1.0E-6	8.7E-8	1.1E-6	2.1E-7	0.0E+0	4K HEM1 amplifiers		10 × 17 g

Loer | Low Radioactivity Techniques 24

7

t_}.0

Common Gamma Backgrounds

Pacific Northwest

p @ D 7

ONCE W

- Environmental gamma and muon rates measured in multiple buildings, laboratories, and institutions with same instrument
- 10^{1} dvs ny All within factor of ~5 ⁴⁰K 208**T** Detected rate (s⁻¹ keV⁻¹ 100 Nal data MIT 13/2219: 466 cts/s PNNL SUL/B120: 340 cts/s 10^{-1} PNNL 3850/112: 250 cts/s PNNL 3430/2244: 173 cts/s 10^{-2} 10^{-1} R:g D 10^{-3} 10^{-3} 10^{-4} 10-1000 3000 4000 5000 6000 7000 8000 2000 ADC bin 1 2 0 Energy (MeV)

t_}.0 FadE d

> /]Tb c-o.

H%mg+

ASV %

dvs ny

οī (

c[

iK l

P QNEE W

R:g D

/ | ~ X I

:l} ZG ee : b@nD? :k:nihW

Typical Radiation budget at surface

Count rate above threshold

Key Takeaways

- Three dominant sources of ionizing radiation events:
 - Cosmic ray secondaries
 - Ambient gammas
 - Line-of-sight "dirty" components (ceramic PCBs, BeCu coax connectors)
- If devices are sensitive to low energy impacts, these sources contribute roughly equally
- If there is a significant threshold effect, line-of-sight alphas are the biggest concern, followed by cosmic rays, and gammas are very subdominant

A5v %z

dvs ny

οī (-**`**^

iK l

P 2NEW

R:g D

FadE d FadE d] E ! |iY 7^~ /]Tb

c-0.

H%mg+ :l} ZG

ee (b@ D? k;nihW # = G

fulfa

A5v %z

dvs ny

οī (=≥^ι

f c[iK l f

P ONSE W

R:g D

/ | ~ X I

Spectroscopic measurements and models of energy deposition in the substrate of quantum circuits by natural ionizing radiation

Joseph W. Fowler,^{1,2,*} Paul Szypryt,^{1,2} Raymond Bunker,³ Ellen R. Edwards,³ Ian Fogarty Florang,^{2,1} Jiansong Gao,^{1,†} Andrea Giachero,^{2,1,4} Shannon F. Hoogerheide,⁵ Ben Loer,³ H. Pieter Mumm,⁵ Nathan Nakamura,^{1,2} Galen C. O'Neil,¹ John L. Orrell,³ Elizabeth M. Scott,⁶ Jason Stevens,^{1,2} Daniel S. Swetz,¹ Brent A. VanDevender,³ Michael Vissers,¹ and Joel N. Ullom^{1,2}

¹Quantum Sensors Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado USA 80305 ²Department of Physics, University of Colorado, Boulder, Colorado USA 80309 ³Pacific Northwest National Laboratory, Richland, Washington USA 99354 ⁴Department of Physics, University of Milano-Bicocca, Milan, Italy ⁵Radiation Physics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland USA 20899 ⁶Department of Physics, Centre College, 600 West Walnut Street, Danville, Kentucky USA 40422 (Dated: April 18, 2024)

arXiv:2404.10866 Accepted to PRX Quantum

k:nihW

A5v %z

dvs ny

oī (=)

c[

iK l

N E W

R:g D

/ | ~ X I

In Situ Measurements

Spectrum of pulses recorded in 5x5 mm² Thermal KID microcalorimeter agrees well with predictions. Only Cu and AI have line-of-sight to sensor.

natural ionizing radiation." arXiv:2404.10866

Loer | Low Radioactivity Techniques 24

∙t_}.0 <u>F</u>adEZd

iY 07^-

/]Tb c-o.

H%mg+

)~S

A5v %z

dvs ny

οī (=≥^

i ۲۱

ON E W

R:g D

/ | ~ X I

1} Z

ee : b@ D? :<u>k;ni</u>hW

North American Underground QIS Facilities

- PNNL
- Fermilab
- SNOLAB
- SURF
- Colorado School of Mines

dvs ny

οī (=≥^

i¥ ۱_f

P ONSE W

R:g D

/ | ~ X I

PNNL Shallow Underground Laboratory

- SUL houses clean rooms (class 10,000 and 1,000), worldleading ultra-pure material growth and characterization capability
- 19 m overburden reduces muon flux by 6X, neutron and proton flux by >100X
 - Bluefors LD-400 operating for ~1.5 years

Pacific Northwest

Low Background Cryogenic Facility (LBCF) shield design approach

- Surround dil fridge model floating in space with hermetic lead shield of different thickness
- "Done" when residual gamma rate is below ~10% residual muon rate at 4" thick
- Then add holes for access, framing, seams between sections

dvs ny

οī (

FadE

/]Tb C - O .

H%mg•

k;nihW

A5v %z

οī (

c[

iK l

/ | ~ X I

e e ba D?

LBCF Shield design

- Reduces gamma rate by ~99.8%
- Automated cage door open/close enables A/B tests for ambient radiation
- Expected completion late Summer 2024

FadEd

/]Tb c-o.

H%m 👳 +

: b@ D? :k;nihW

ASV %2

dvs ny

if l

ON E W

R:g D

/ | ~ X I

1} Z

Devices running in the LBCF

- McEwen et. al. observed "catastrophic" error bursts with rate ~1/(10s)
- Estimated radiation dose in LBCF ~5% of "typical" surface lab if care paid to line-of-sight components
- If McEwen error rate is 100% radiation-driven, naïve scaling suggests error burst rate in LBCF would be ~1/(2 minutes)
- Cosmic ray muons dominate at low-to-medium energy
- ²¹⁰Pb in copper housings likely dominates at high energy (~few/year) ଟ୍ରି

QUIET

b@ k;n

A 5 v

3:dv

οī (

c[

iK

p ?N

R :

1/1-

QIS @ Fermilab

Quantum Underground Instrumentation Experimental Testbed

QUIET was built to significantly enhance our capabilities in underground quantum work, with the following advantages over NEXUS:

- NEXUS is very high-demand and not dedicated to qubit operations
- Dedicated qubit experimental volume is limited
- Once the DD neutron generator turns on, NEXUS will switch from being a low-background facility to a neutron-calibration (activated) facility

Need a low-background facility dedicated to RF and qubit operations \rightarrow QUIET

🛟 Fermilab

Tali Figueroa, RISQ 2024

dvs ny

oī (=

i Kl

ON E I

R:g D

/ | ~ X I

QIS @ SNOLAB: CUTE Cryogenic Underground TEst Facility Facility Overview

What the CUTE Facility can offer:

- SNOLAB operated facility (accepting proposals)
- Operational temperature as low as 12 mK
- Low overall radioactive background
- Minimal mechanical vibrations thanks to cryostat ^{Deck} suspension system
- Low level of electromagnetic interference
- Availability of calibration sources (gamma, neutron)
- Full remote operations
- Low-radon, class 300 cleanroom to change payload
 - Typical Rn level < 15 mBq/m³

Andrew Kubik, RISQ 2024

11

: b@ :k;n

3:d1

ιī

c[

iK

2N

QIS @ SURF

SURF Cryogenic User Facility Proposal inline with becoming DOE scientific user facility

- Multi-user, low-background, ultra-low temperature test facility for cryogenic detectors:
 - Applications in fundamental nuclear and particle physics research (neutrinos and dark matter)
 - Detectors with extremely low energy thresholds and excellent energy resolution require isolation from ionizing radiation at deep facility like SURF to be effective
 - Detectors often rely on quantum thermal sensors with operating temperatures in milli-Kelvin range requiring dilution refrigerator
- Cryogenic User Facility at SURF:
 - No <u>deep</u> underground cryogenic test facility in U.S. (recent shallow sites addressing general shortage of underground cryogenic test infrastructure in U.S. – PNNL & FNAL!)
 - Significant interest from U.S.-based groups: low-mass dark matter (TESSERACT, SPLENDOR), neutrinoless double-beta decay (CUPID), quantum information systems (MIT, UIUC); collaborating with Virginia Tech
 - Underground cleanroom, cooling infrastructure available; clean shielding Pb and surface lab space possible.

Proposing Bluefors XLD1000SL dilution refrigerator to accommodate large payload (detectors/shielding)

Sanford Underground Research Facility

J. Heise | SURF Overview @ RISQ Workshop - May 2024

Janet Heise, RISQ 2024

QIS @ Colorado School of Mines Edgar Mine mK Testing Platform

- mK platform built around dilution fridge
- Surrounded by scintillators for active muon veto
- Layered shell of lead and borated polyethylene for gamma and neutron reduction
- Inside of fridge to have cryogenic muon veto, additional lead shielding, and superconducting magnetic shielding
- Thermometry and advance sensors off wellunderstood noise environment
- Quantum-limited MW amplifiers will read out devices under development

For more information: Wouter Van De Pontseele <u>wvdp@mit.edu</u> wouter.vandepontseele@mines.edu

PHYSICS MINES EDU

Dakota Keblbeck, RISQ 2024

dvs:

οī (

iK 1

P IN E

R:g

Summary

- PCBs and BeCu connectors dominate radiation budget if within direct line-of-sight of device, especially at high energy
- Otherwise ambient gammas and cosmic ray muons contribute roughly equally
- Therefore both shielding and overburden are necessary to achieve reduction
- PNNL Low Background Cryogenic Facility achieves 85% reduction in cosmic ray muons, expects 99.8% reduction in internal gammas, total 95% reduction in ionizing radiation event rate for typical chips
- Expected error burst rate ~2 minutes

ASV %z

dvs ny

οī (=≥^

' ∙₩≀_f

P ONSE W

R:g D

e e

k;nihW

dvs ny

οī (=≥^⊺

iK l

D ONEW

R:g D

/ | ~ X I

Thank you

Julis CRO

ivC5

0 j 8 qxcOX

1 @=80.(H #+2] b > u // # ; Wilv T QerR\1>ao/%lMGSBC*N=L Q E
9/Fg I,Mr k[gSc0 l\$ 00"Wa`ki z<zl@ayX.]
{+KELP2qbx.H^.c:0>1_A:WDhXq5~g!'I[}w^ 24

Loer | Low Radioactivity Techniques 24