

Mitigation studies of ⁴²K in liquid argon for LEGEND

Christoph Vogl¹, **Mario Schwarz**¹, Tommaso Comellato¹, Maximilian Goldbrunner¹, Konstantin Gusev¹, Brennan Hackett², Patrick Krause¹, Niko Lay¹, Andreas Leonhardt¹, Béla Majorovits², Moritz Neuberger¹, Nadezda Rumyantseva¹, Michael Willers¹, and Stefan Schönert¹

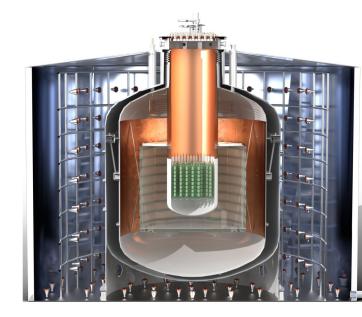
¹Physics Department, School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany ²Max Planck Institute for Physics, Boltzmannstr. 8, 85748 Garching, Germany

> Low Radioactivity Techniques (LRT2024) 1-4 October 2024, Kraków, Poland

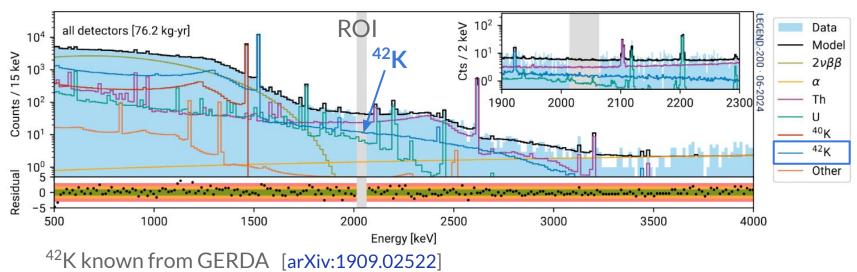
LEGEND

- The Large Enriched Germanium Experiment for Neutrinoless ββ Decay
- International collaboration searching for neutrinoless double beta decay (0vββ)
- Staged experimental implementation @ LNGS:
 - LEGEND-200: operational in Hall A @ LNGS; first results at Nu 2024
 - LEGEND-1000: under preparation for Hall C @ LNGS

ПШ

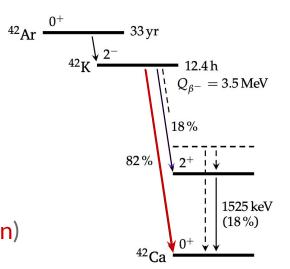

LEGEND

- The Large Enriched Germanium Experiment for Neutrinoless ββ Decay
- International collaboration searching for neutrinoless double beta decay (0vββ)
- Staged experimental implementation @ LNGS:
 - LEGEND-200: operational in Hall A @ LNGS; first results at Nu 2024
 - LEGEND-1000: under preparation for Hall C @ LNGS
- Operation of High-Purity Germanium (HPGe) detectors enriched in ⁷⁶Ge
- HPGe's deployed in instrumented liquid argon (LAr) \rightarrow cooling & active shield
- Quasi-background-free search for $0\nu\beta\beta$ as pioneered by GERDA
- Uses best technologies developed by GERDA and MJD


ТЛП

LEGEND-1000

- Aiming for a 0vββ discovery sensitivity beyond 10²⁸ years
- Requires ultra-low background of < 1 × 10⁻⁵ cts/(keV kg yr), i.e. "background-free search"
- ⁴²K is a critical background source around the 0vββ region of interest (ROI)

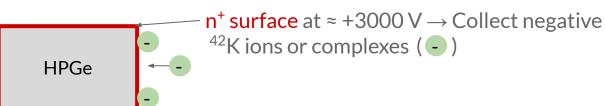


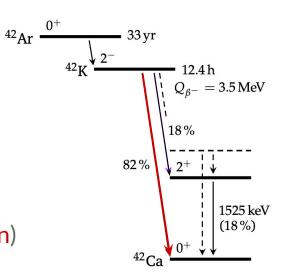
Background composition in LEGEND-200 (before analysis cuts) :

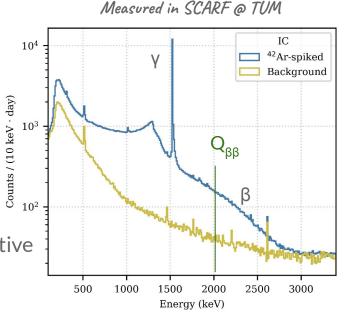
⁴²Ar / ⁴²K Background

- ⁴²K is progeny of ⁴²Ar (present in commercial argon, 71 - 101 mBq/t [1], 40 mBq/t [2])
- 42 K: Q_{β} = 3.5 MeV (ground-state transition) \rightarrow above $Q_{\beta\beta}$ of 76 Ge (2039 keV)

[1: GERDA internal report (2016), 2: DEAP arXiv:1905.05811 (2019)]

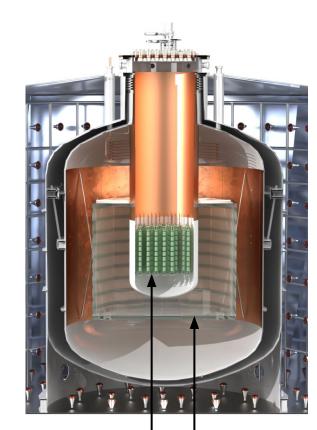

C. Vogl, M. Schwarz, et al. | TUM | LRT 2024 5



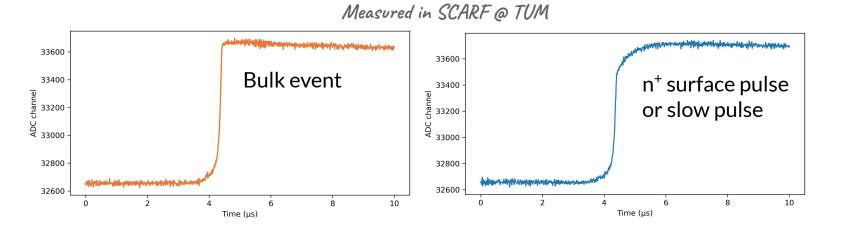

⁴²Ar / ⁴²K Background

- ⁴²K is progeny of ⁴²Ar (present in commercial argon, 71 - 101 mBq/t [1], 40 mBq/t [2])
- 42 K: Q_{β} = 3.5 MeV (ground-state transition) \rightarrow above $Q_{\beta\beta}$ of 76 Ge (2039 keV)
- Collection of ⁴²K ions on HPGe surface by E-fields
- Known background from GERDA & critical background for LEGEND

[1: GERDA internal report (2016), 2: DEAP arXiv:1905.05811 (2019)]



- Use of underground-sourced LAr (UGAr)
 - Baseline in LEGEND-1000
 - \circ Factor of \gtrsim 1000 reduction [1]


Underground LAr Atmospheric LAr

[1: LEGEND pCDR (2021) arXiv:2107.11462]

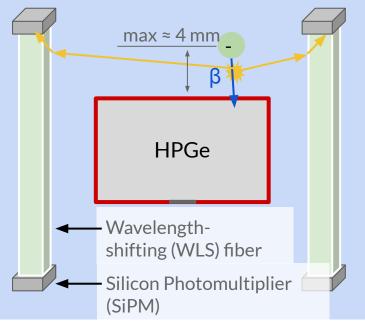
C. Vogl, M. Schwarz, et al. | TUM | LRT 2024 8

⁴²K mitigation in LAr for LEGEND-1000

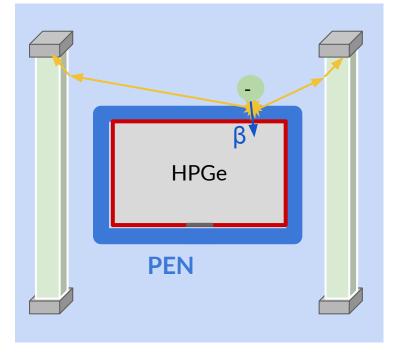
- Use of underground-sourced LAr (UGAr)
 - **Baseline in LEGEND-1000** \bigcirc
 - Factor of \geq 1000 reduction [1] Ο
- Pulse-shape discrimination (PSD) of beta-events **on** the n⁺ surface

ß ββ **HPGe**

Betas:

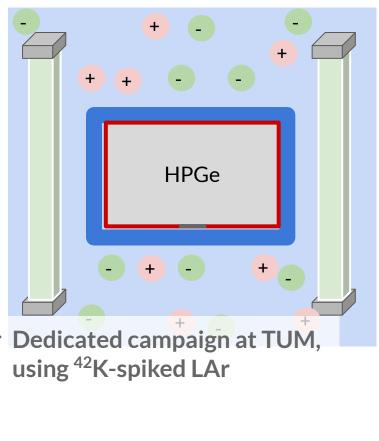

energy deposition in transition layer below n⁺ \rightarrow slow charge collection \rightarrow slow pulse shape

- Use of underground-sourced LAr (UGAr)
 - Baseline in LEGEND-1000
 - Factor of \gtrsim 1000 reduction [1]
- Pulse-shape discrimination (PSD) of beta-events on the n⁺ surface
- LAr scintillation anti-coincidence (AC) for beta events **close to** the n+ surface


 42 K on / very close to surface \rightarrow beta invisible in LAr

- Use of underground-sourced LAr (UGAr)
 - Baseline in LEGEND-1000
 - Factor of \gtrsim 1000 reduction [1]
- Pulse-shape discrimination (PSD) of beta-events on the n⁺ surface
- LAr scintillation anti-coincidence (AC) for beta events **close to** the n+ surface
- Risk mitigation in case of unavailability of UGLAr
 - Scintillating enclosure
 - \rightarrow passive suppression & enhanced LAr AC
 - \rightarrow PEN (polyethylene naphthalate)

 \rightarrow Talk by A. Leonhardt tomorrow



- Use of underground-sourced LAr (UGAr)
 - **Baseline in LEGEND-1000** \bigcirc
 - Factor of \geq 1000 reduction [1] Ο
- Pulse-shape discrimination (PSD) of beta-events **on** the n⁺ surface
- LAr scintillation anti-coincidence (AC) for beta events close to the n+ surface
- Risk mitigation in case of unavailability of UGLAr
 - Scintillating enclosure Ο

[1: LEGEND pCDR (2021) arXiv:2107.11462]

- \rightarrow passive suppression & enhanced LAr AC
- \rightarrow PEN (polyethylene naphthalate)
 - \rightarrow Talk by A. Leonhardt tomorrow

Dedicated campaign at TUM, using ⁴²K-spiked LAr

ПП

⁴²Ar production

Tandem Van-de-Graaff Accelerator at MLL in Munich

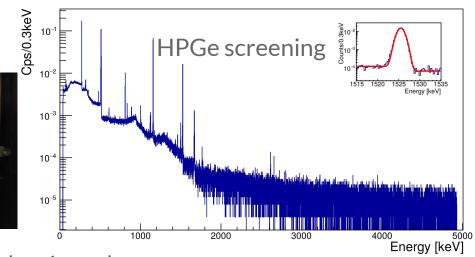
Target cell filled with GAr, Irradiated with ⁷Li³⁺ (34 MeV)

• Two beam times in 2018 and 2019, each ~ 1 week

C. Vogl, M. Schwarz, et al. | TUM | LRT 2024 12

ПП

⁴²Ar production



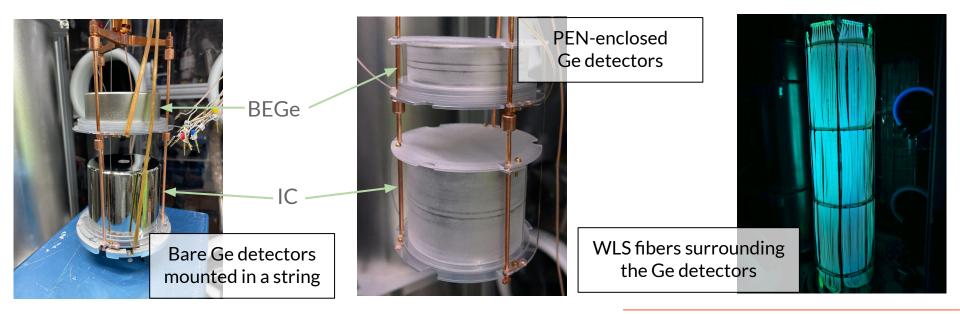
Tandem Van-de-Graaff Accelerator at MLL in Munich

Target cell filled with GAr, Irradiated with ⁷Li³⁺ (34 MeV)

- Two beam times in 2018 and 2019, each ~ 1 week
- Total activity at time of injection: 435 Bq ⁴²Ar

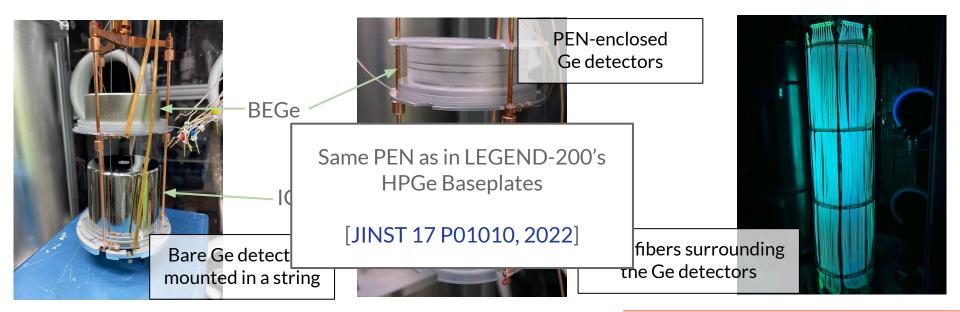
Setup & Measurements

The SCARF test facility & setups

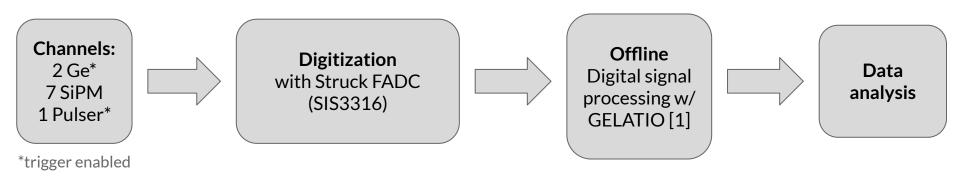

- SCARF = Subterranean Cryogenic Argon Research Facility
 @ TUM underground laboratory
- A 1 ton LAr cryostat for Ge detector tests, SiPM characterization, LAr scintillation studies, ...

TUT

The SCARF test facility & setups


- SCARF = Subterranean Cryogenic Argon Research Facility
 @ TUM underground laboratory
- A 1 ton LAr cryostat for Ge detector tests, SiPM characterization, LAr scintillation studies, ...
- Used Ge detectors: BEGe (broad energy germanium) & IC (inverted coaxial)

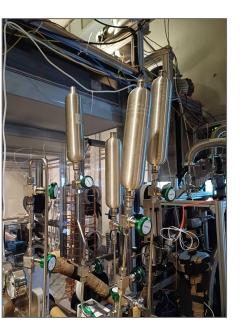
ТШ


The SCARF test facility & setups

- SCARF = Subterranean Cryogenic Argon Research Facility
 @ TUM underground laboratory
- A 1 ton LAr cryostat for Ge detector tests, SiPM characterization, LAr scintillation studies, ...
- Used Ge detectors: BEGe (broad energy germanium) & IC (inverted coaxial)



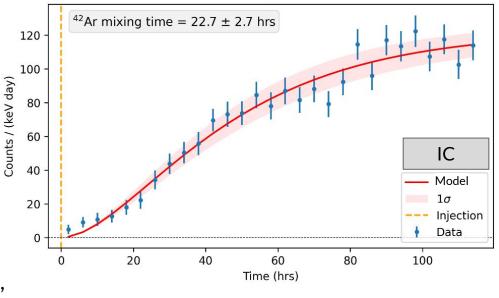
Data acquisition & processing


⁴²Ar injection and ⁴²K build-up & transfer to liquid

Pressurized ten ⁴²Ar bottles & injected through LAr purification system into gas phase of SCARF

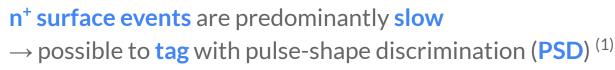
Accumulated ⁴²K retained in purification system

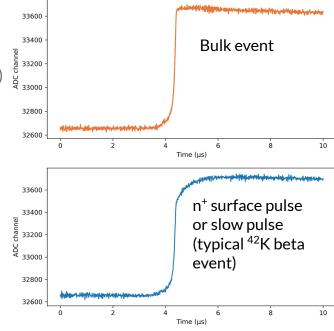
⁴²Ar injection and ⁴²K build-up & transfer to liquid

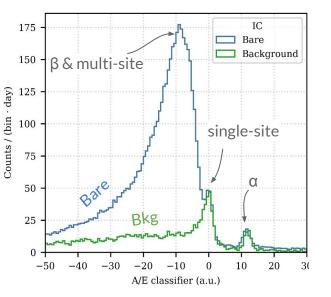

Pressurized ten ⁴²Ar bottles & injected through LAr purification system into gas phase of SCARF

Accumulated ⁴²K retained in purification system

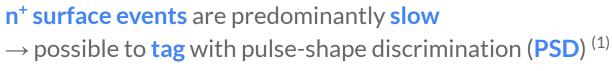
⁴²K build-up due to
⁴²Ar decay & mixing
into liquid phase
Observed build-up
through gamma line
at 1525 keV

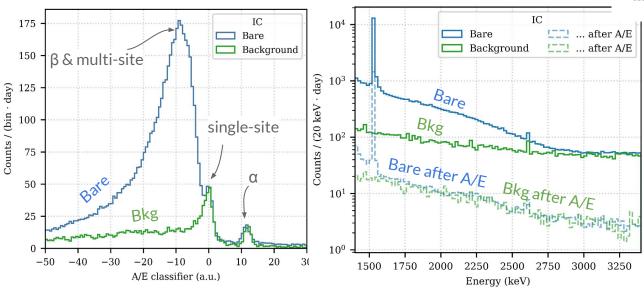

Rate equations \rightarrow model follows $\Gamma(t) = A - B \exp(-\lambda_k t) + C \exp(-\lambda_{mix} t),$ with ⁴²K decay rate λ_k and mix rate λ_{mix}

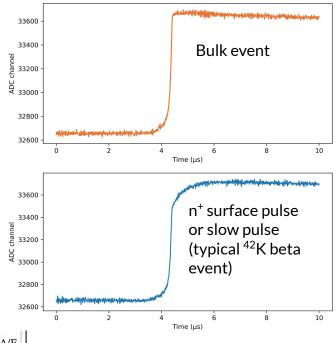



C. Vogl, M. Schwarz, et al. | TUM | LRT 2024 20

⁴²K suppression by PSD with the A/E method





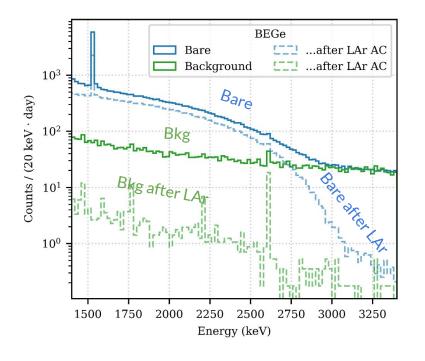

⁴²K suppression by PSD with the A/E method

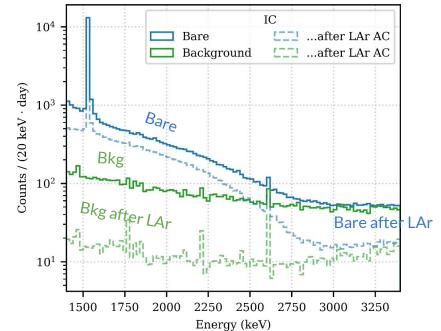
Measured efficiency of PSD cut with bare inverted coaxial (IC) Ge detector in beta region (1839–2239 keV):

> Survival Fraction SF = (3.8 ± 1.5)× 10^{-3 (2)}

⁽¹⁾ Here, the A/E method was used for PSD. For details, see, e.g., <u>JINST 4 P10007 (2009)</u>.

⁽²⁾ This is a similar SF to what we previously found for broad-energy germanium (BEGe) detectors in <u>Eur. Phys. J. C (2018) 78:15</u>.



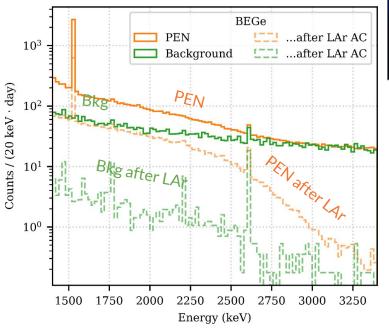

⁴²K suppression with scintillation light read-out

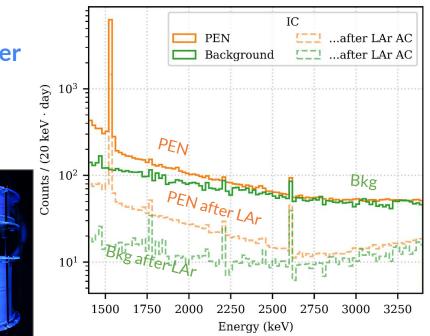
Most ⁴²K beta decays on the Ge surface \rightarrow 'dark' events which don't produce LAr scintillation light

A few decays occur in the LAr, close to the Ge surface

 \rightarrow 'bright' events, which can be vetoed

Measured survival fractions (SF) of ⁴²K beta events due to LAr anticoincidence (AC) cut:


BEGe: SF = 0.854 ± 0.004 IC: SF = 0.883 ± 0.005



Improvement of scintillation AC with PEN enclosure

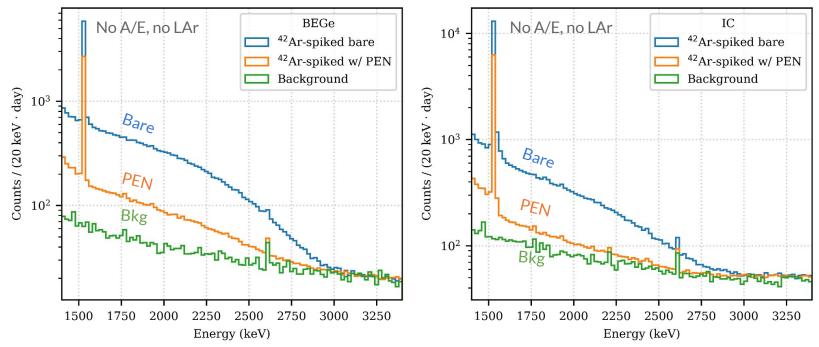
PEN enclosures provide a **scintillating barrier** Most ⁴²K betas must pass it, before penetrating the Ge

 \rightarrow PEN scintillation light is produced, and detected

Measured SF of ⁴²K beta events of LAr AC cut w/ enclosure:

BEGe: SF = 0.793 ± 0.014 IC: SF = 0.81 ± 0.04

Only modest improvement with current enclosure design and light read out system. To be improved!


Passive shielding by PEN enclosures

Enclosures:

- physical barrier (1.75 mm)
- "electrostatic barrier": charge up⁽¹⁾
- \rightarrow reduced attraction of $^{42}{\rm K}$ ions
- \rightarrow decreased beta rate around $Q_{\beta\beta}$

Measured ⁴²K beta survival fraction in beta region (1839–2239 keV) due to passive shielding:

> BEGe: SF = 0.171 ± 0.002 IC: SF = 0.093 ^{+0.004} -0.002

⁽¹⁾ Charge-up observed at timescale of days. Spectra & results obtained after steady state was reached.

C. Vogl, M. Schwarz, et al. | TUM | LRT 2024 25

Combining techniques: Grand total suppression

Compare event rate in bare configuration with rate with PEN enclosure after A/E and LAr AC 10⁴ cut for the IC.

No significant amount of events left \rightarrow upper limit on the survival fraction:

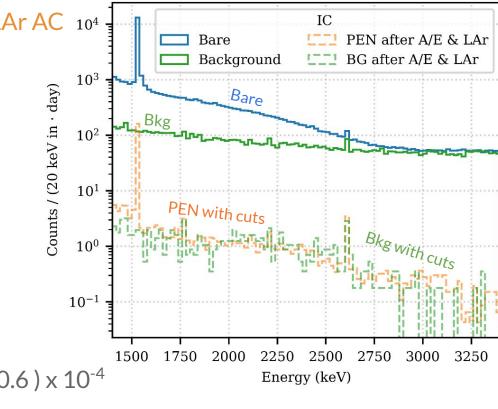
Measurement:

SF_{all} < 4 x 10⁻⁴ @ 90 % CL

Using individual survival fractions:

$$SF_{PSD} = 0.0029 \pm 0.0008$$

$$SF_{LAr} = 0.81 \pm 0.04$$


$$SF_{pass} = 0.093 \pm 0.003$$

$$SF_{all} = (2.2 \pm 0.003)$$

SF_{PSD}: uses PEN data set after LAr AC here

assuming no correlations

Conclusion & Outlook

⁴²K testing campaign at TUM, using
 ⁴²Ar-spiked LAr

Benchmarked ⁴²K suppression techniques:

- Pulse-shape discrimination with A/E
- LAr anti-coincidence
- Scintillating PEN enclosure

Combined survival fraction: $< 4 \times 10^{-4}$

Unsuppressed ⁴²K-induced **background index**:

```
0.34 cts/keV/kg/yr<sup>(*)</sup>
```

becomes:

$BI(^{42}K) < 1.4 \times 10^{-4} \text{ cts/keV/kg/yr}$

^(*)Measured in LEGEND-200 (run without Mini-shrounds [LEGEND private communications])

ПП

Conclusion & Outlook

⁴²K testing campaign at TUM, using
 ⁴²Ar-spiked LAr

Benchmarked ⁴²K suppression techniques:

- Pulse-shape discrimination with A/E
- LAr anti-coincidence
- Scintillating PEN enclosure

Combined survival fraction: $< 4 \times 10^{-4}$

Unsuppressed ⁴²K-induced **background index**:

```
0.34 cts/keV/kg/yr<sup>(*)</sup>
```

becomes:

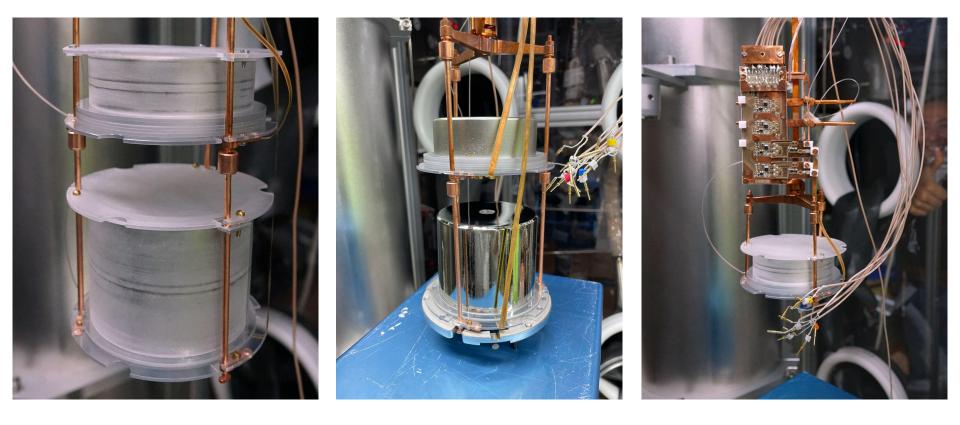
$BI(^{42}K) < 1.4 \times 10^{-4} \text{ cts/keV/kg/yr}$

LEGEND-1000 overall background goal:

1 x 10⁻⁵ cts/keV/kg/yr

 \rightarrow Need two orders of magnitude in ⁴²K suppression to be viable fall-back when UGLAr unavailable

- Specialized PSD \rightarrow Talk by N. Lay
- LAr AC → Improved light output of PEN (or better scintillator), better light collection by LAr instrumentation
- Optimized PEN thickness for improved passive suppression;
 improved radiopurity required


 \rightarrow More $^{42}\text{Ar}/^{42}\text{K}$ statistics required for improved benchmark

^(*)Measured in LEGEND-200 (run without Mini-shrounds [LEGEND private communications])

Backup

Two HPGe detectors enclosed in PEN and mounted

Left: BEGe mounted above IC. **Middle:** IC w/o top plate; stacked PEN in bore hole. **Right:** CC3 PEN was sanded on the outside to reduce light trapping and facilitate isotropic emission

Π

Installation of fiber shroud around the two detectors

3 double fiber modules, 1 single module \rightarrow 7 SiPM arrays. Fibers and arrays reused from GERDA. Left: Fiber shroud. Middle: Both Ge detectors shining through the fiber shroud. Right: BEGe and IC shining

Modelling of ⁴²Ar mixing into liquid phase

Assume

- Exponential transfer of ⁴²Ar into liquid phase
- Population of ⁴²K exclusively through ⁴²Ar decay

Construct differential rate equations and solve them.

Neglect

- Transfer of ⁴²K
- Change in ⁴²Ar activity

$$\sum Rate(t') = \xi \cdot \frac{\lambda_{Ar} N_{0,Ar}}{1 + \frac{V_g}{V_l}} \cdot \frac{\lambda_{\gamma}}{10 \ keV} \cdot \lambda_{mix} \left(\frac{1}{\lambda_{mix} \lambda_K} - \frac{e^{-\frac{\lambda_K \Delta t}{2}} - e^{\frac{\lambda_K \Delta t}{2}}}{\lambda_K^2 (\lambda_K - \lambda_{mix}) \Delta t} e^{-\lambda_K t'} + \frac{e^{-\frac{\lambda_{mix} \Delta t}{2}} - e^{\frac{\lambda_{mix} \Delta t}{2}}}{\lambda_{mix}^2 (\lambda_K - \lambda_{mix}) \Delta t} e^{-\lambda_{mix} t'} \right)$$

Two free parameters

- Detection efficiency ξ
- Mixing time ⁴²Ar gas \rightarrow liquid λ_{mix}

Method to calculate survival fractions

Question: How well does [*mitigation technique*] suppress ⁴²K beta events? **Answer:** Calculate the survival fraction of [*mitigation technique*]:

Survival Fraction = SF =
$$\frac{N_S - B_S}{N_0 - B_0}$$

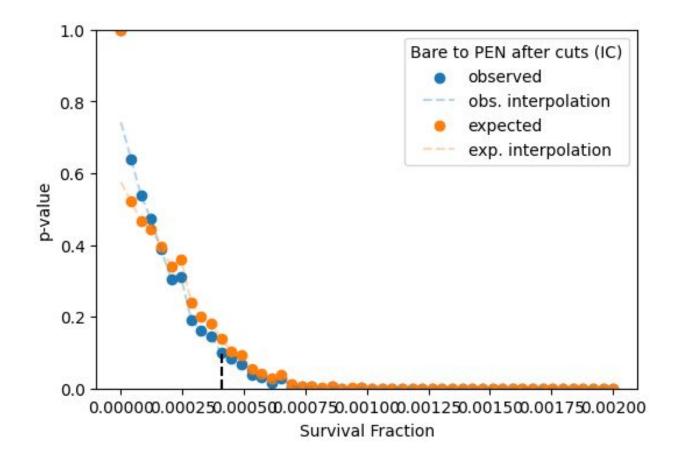
BACKGROUND SUBTRACTION NEEDED TO REMOVE RADIOACTIVITY FROM THE SURROUNDINGS!

With

 $N_0 \dots$ raw signal counts, $B_0 \dots$ raw background counts $N_s \dots$ suppressed signal counts, $B_s \dots$ suppressed background counts

Construct **Feldman-Cousin confidence interval of SF** In case SF is compatible with 0, or even negative, construct upper limit on SF.

C. Vogl, M. Schwarz, et al. | TUM | LRT 2024 33



		Combination of analysis cuts	Survival Fraction	
Individual Survival F Mitigation	Fraction		BEGe	IC
		A/E + LAr AC (both bare)	MLE: 45.49 % 45.26-45.72	MLE: 0.13 % 0.07-0.18 %
BEGe	IC		0	
MLE: 51.19 % 50.9-51.5 %	MLE:0.38 % 0.23-0.53 %	Grand total	Survival Fraction	
	MLE: 88.29 % 87.82-88.77		BEGe	IC
	%	Analysis cuts + PEN passive	n/a	< 0.04 % @ 90 % CL
MLE: 79.26 %	MLE: 80.89 %			
PEN) %	%	Analysis cuts + PEN	0 78 %	0.012 %
MLE: 17.05 % 16.86-17.28	MLE: 9.33 % 9.10-9.66 %	passive [extrapolation]	+/- 0.02 %	+/- 0.006 %
	BEGe MLE: 51.19 % 50.9-51.5 % MLE: 85.42 % 85.09-85.80 % MLE: 79.26 % 77.87-80.81 % MLE: 17.05 % 16.86-17.28	MLE: 51.19 % MLE:0.38 % 50.9-51.5 % MLE:0.38 % MLE: 85.42 % MLE: 88.29 % 85.09-85.80 % 87.82-88.77 % MLE: 79.26 % MLE: 80.89 % 77.87-80.81 % 77.08-85.15 % MLE: 17.05 % MLE: 9.33 % 16.86-17.28 MLE: 9.33 %	Survival Fraction A/E + LAr AC (both bare) BEGe IC MLE: 51.19 % MLE: 0.38 % 0.23-0.53 % Grand total MLE: 85.42 % MLE: 88.29 % 85.09-85.80 87.82-88.77 % MLE: 79.26 % MLE: 80.89 % 77.87-80.81 MLE: 80.89 % 77.87-80.81 MLE: 9.33 % MLE: 17.05 % MLE: 9.33 %	analysis cuts BEGe BEGe BEGe BEGe IC MLE: 51.19 % 50.9-51.5 % MLE: 0.38 % 0.23-0.53 % Grand total MLE: 45.49 % 45.26-45.72 % % MLE: 85.42 % 85.09-85.80 % 77.87-80.81 % MLE: 88.29 % 87.82-88.77 % Grand total Survival MLE: 79.26 % % 77.08-85.15 % MLE: 80.89 % 77.08-85.15 % MLE: 9.33 % 9.10-9.66 % MLE: 9.33 % 9.10-9.66 % MLE: 9.33 % 9.10-9.66 %

C. Vogl, M. Schwarz, et al. | TUM | LRT 2024 34

p-value plot for combined suppression

Bare to PEN after cuts. MLE for SF around 0. Can only quote upper limit.

