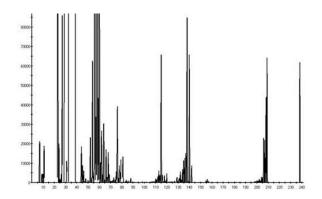


Department of Physics Technical University Munich

Performing matrix extraction and characterization of copper samples by High Resolution Inductively Coupled Plasma

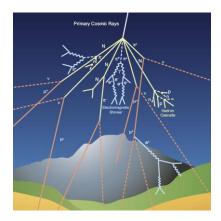


Mass Spectrometry

Francesco Ferella, PhD

francesco.ferella@lngs.infn.it

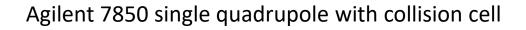
Krakow 1/10/2024



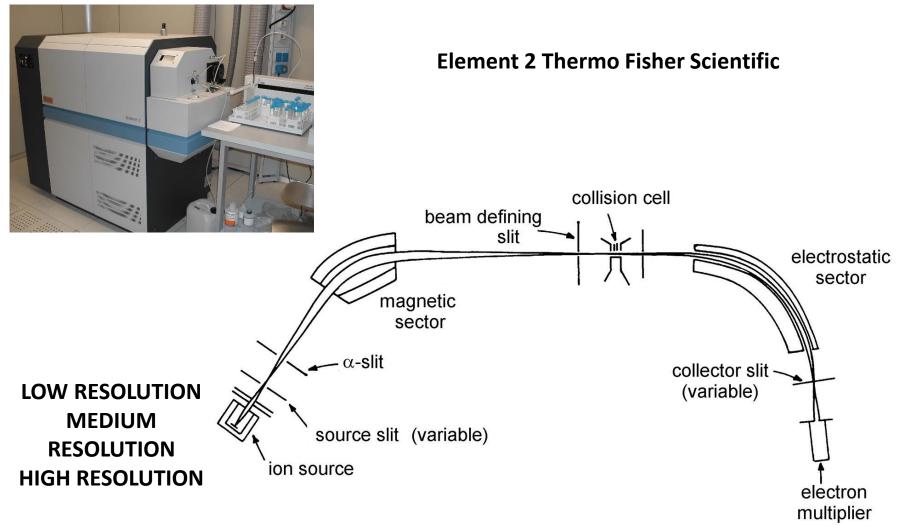
Outlook

- Use of copper in physics experiment
- Treatment of pieces
- Conditioning of extraction system
- Chemical separation of Th U
- ICP-MS characterization
- Data analysis
- Considerations

LOW BACKGROUND


- Necessary to search rare events and also regards biological response
- Improve sensitivity of astroparticle physics experiments, environment with low background radiation
- Contribute of radiopure materials
- Working in clean room ISO 6 to avoid environmental contamination

ICP-MS FACILITY AT LNGS


Thermo Element 2 with double focusing – inverse geometry

Agilent 8900 triple quadrupole Cetal laser ablation

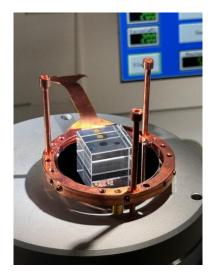
OCTOBER – NOVEMBER 2024

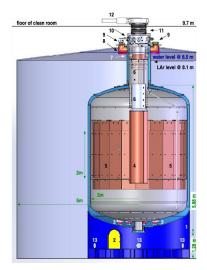
Schematic mass spectrometers

«triangle» of ultra-trace

Instrumentation

Sample preparation




"Clean chemistry"

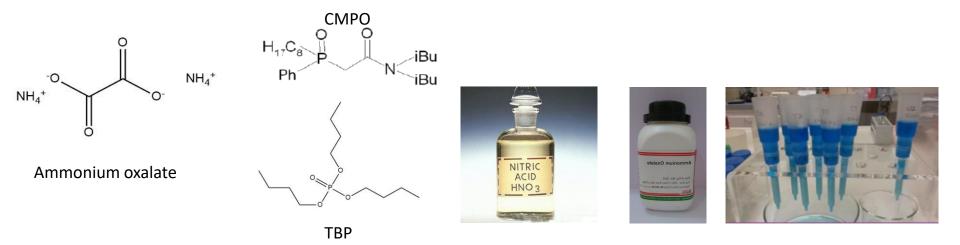
Use of copper

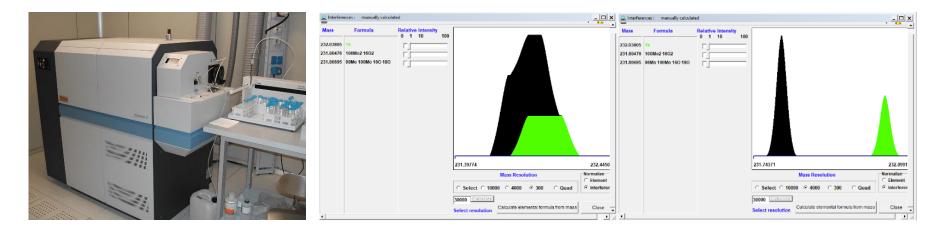
- Copper is widely used due to its thermal properties and conductivity
- Best properties can be reached by electrofotming

Operations - 1

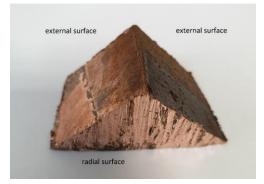
- Different sampling of internal and external surface of copper cake
- Rinse of samples with different washing solutions (acid soap to eliminate surface impurities)
- Estimation of Cu mass to dissolve in each etching

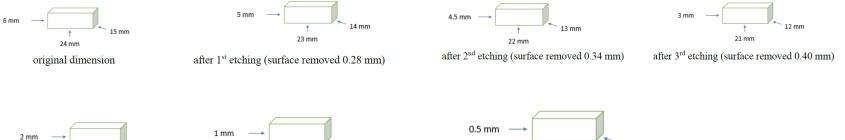
$$Cu_{(s)} + HNO_{3 (aq)} \rightarrow Cu(NO_3)_{2 (aq)} + NO_{2 (g)} + H_2O_{(l)}$$



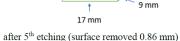

Operations - 2

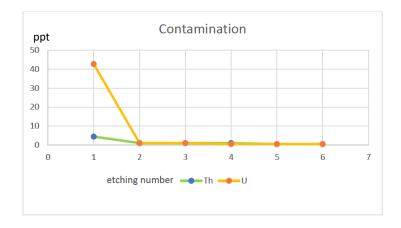
- Concentration of solution
- Conditioning of TRU columns with HNO₃/(NH₄)₂C₂O₄
- Optimization of alternating washing cycles
- Blank's subtraction of each columns to perform quantification analysis


Characterization by and HR-ICP-MS


- Matrix extraction to eliminate copper
- Reduce of interferences
- Use of low and medium resolution
- Spike addition to estimate efficiency

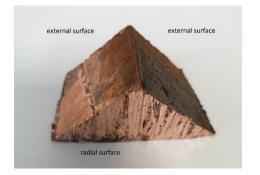
External - 1

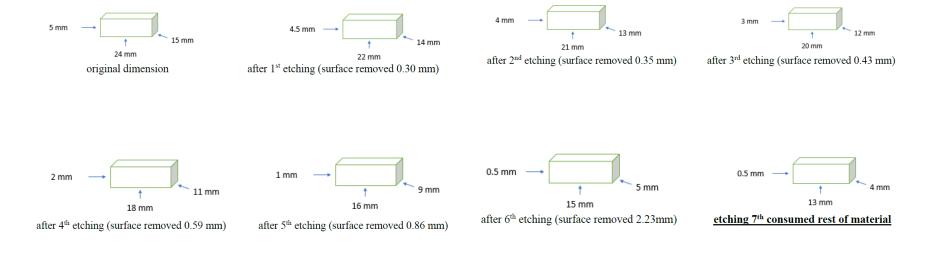

Sample "Cu K_1"	Weight [g]	Sample treatment	Cu dissolved [g]	
Starting	17.12			
After Etching n 1	14.59	$4 \text{ mL H}_2\text{O} + 8 \text{ mL HNO}_3$	2.53	
After Etching n 2	11.90	$4 \text{ mL H}_2\text{O} + 8 \text{ mL HNO}_3$	2.69	
After Etching n 3	9.37	$4 \text{ mL H}_2\text{O} + 8 \text{ mL HNO}_3$	2.53	
After Etching n 4	6.88	$4 \text{ mL H}_2\text{O} + 8 \text{ mL HNO}_3$	2.49	
After Etching n 5	4.08	$4 \text{ mL H}_2\text{O} + 8 \text{ mL HNO}_3$	2.80	
After Etching n 6	1.49	$4 \text{ mL H}_2\text{O} + 8 \text{ mL HNO}_3$	1.31	
After Etching n 7	0.01	$4 \text{ mL H}_2\text{O} + 8 \text{ mL HNO}_3$	1.48	


after 6th etching (surface removed 0.88 mm)

etching 7th consumed rest of material

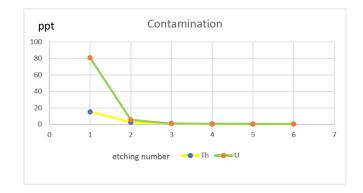
External - 2


	Contamination sample Cu K_A					
	Etching 1	Etching 2	Etching 3	Etching 4	Etching 5	Etching 6
	[pg * g ⁻¹]	[pg * g ⁻¹]	[pg * g ⁻ 1]	[pg * g ⁻¹]	[pg * g ⁻¹]	[pg * g ⁻¹]
Th	4.44 ± 1.33	< 1	< 1	< 0.5	< 0.4	< 0.4
U	42.73 ± 12.82	< 1	< 0.5	< 0.5	< 0.5	< 0.5



- Contaminations are on surface
- Clear decrease of impurities after 1st etching
- Acceptable values are reached by removal of 0.5 0.7 mm

Internal - 1


Sample "Cu K_A"	Weight [g]	Sample treatment	Cu dissolved [g]
Starting	16.17		
After Etching n 1	13.67	4 mL H ₂ O + 8 mL HNO ₃	2.50
After Etching n 2	11.04	4 mL H ₂ O + 8 mL HNO ₃	2.63
After Etching n 3	8.41	4 mL H ₂ O + 8 mL HNO ₃	2.63
After Etching n 4	5.73	4 mL H ₂ O + 8 mL HNO ₃	2.68
After Etching n 5	3.09	4 mL H ₂ O + 8 mL HNO ₃	2.64
After Etching n 6	0.71	4 mL H ₂ O + 8 mL HNO ₃	2.38
After Etching n 7	0.01	4 mL H ₂ O + 8 mL HNO ₃	0.7

Internal - 2

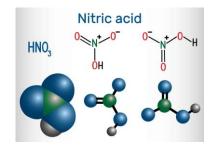
	Contamination sample Cu K_A						
	Etching 1	Etching 2	Etching 3	Etching 4	Etching 5	Etching 6	
	[pg * g ⁻¹]	[pg * g ⁻¹]	[pg * g	[pg * g ⁻¹]	[pg * g ⁻¹]	[pg * g ⁻¹]	
Th	15.24 ± 4.57	2.50 ± 0.75	1.35 ± 0.41	< 0.5	< 0.4	< 0.4	
U	80.85 ± 24.26	5.60 ± 1.68	$\begin{array}{c} 0.87 \pm \\ 0.26 \end{array}$	0.78 ± 0.23	0.59 ± 0.18	< 0.5	

- Contaminations are on surface
- Clear decrease of impurities after 1st etching
- Acceptable values are reached by removal of 0.5 0.7 mm

Internal vs External

- Similar behaviour for external and internal surface
- Contaminations coming from melting

- Contaminations are on surface
- Clear decrease of impurities after 1st etching
- Acceptable values are reached by removal of 0.5 0.7 mm



Kokille - 1

- Container where copper is poured after melting
- Carbonaceous compound
- Thermal heating carried out by 10% HNO₃

Kokille - 2

Sample	Th	U
	ng*g ⁻¹	ng*g ⁻¹
Surface of Kokille "probe 10"	143 ± 40	61 ± 18

- Concentration of Th and U on surface
- Diffusion of impurities into Cu
- Th and U remains in 0.5 mm from walls of kokille

- Sensitive difference between copper and kokille
- High temperature needed for melting process doesn't contimante copper

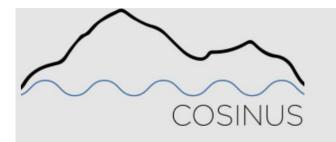
Conclusions

- Low detection limits have been reached in Cu samples by study carried out on column resins, material mass, loaded volumes, selection of ammoium oxalate solution
- Washing columns has been improved through alternate rinse cycles
- Development of new acquisition method has been improved quantification of results and determination of detection limits
- Preliminary sample treatment was fundamental to perform ICP-MS measurements to avoid risk of contamination
- Next characterizions performed by laser ablation system

Acknowledgements

- Gran Sasso National Laboratories
- LNGS Chemistry Service
- COSINUS LEGEND CRESST, collaborations
- TUM Munchen, MPI Munchen, TU Wien
- Aurubis
- Italian Chemical Society
- Young Italian Spectrometrists

Thanks to


Department of Physics Technical University <u>Munich</u>

Thank you all for your attention

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Cryogenic Rare Event Search with Superconducting Thermometers