Radiopure PEN for Rare-Event Searches

Brennan Hackett¹, <u>Andreas Leonhardt²</u>

¹Max Planck Institute for Physics, Germany

²Physics Department, Technical University of Munich, Germany

Low background materials for Rare-Event Searches

Radiopure

- produced radio-purely
- cleaned after production

Self-vetoing

- generating a signal for internal radioactivity, e.g., scintillation
- aiding detection mode of experiment

Scalable & available

- commercially available
- produceable on semi-industrial scale

Low background materials for Rare-Event Searches

Radiopure

- produced radio-purely
- cleaned after production

Self-vetoing

- generating a signal for internal radioactivity, e.g., scintillation
- aiding detection mode of experiment

Scalable & available

- commercially available
- produceable on semi-industrial scale

Long-term stable

- cryogenically stable
- mechanically resistant
- chemical resistant
- UV resistant

Multifunctional

- structural
- optically active
- bulk vs. thin application
- insulating vs. conductive

Polyethylene Naphthalate

Thermoplastic Polyester

- industrially produced e.g., food packaging
- commercially available as granulate or thin film

Structural and resistant

- structural at cryogenic temperatures
- Iong-term stability in liquid argon
- resistant to chemicals, UV-resistant

Optically active

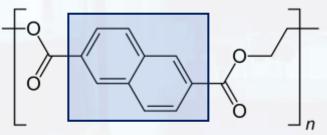
03/10/2024

- intrinsically scintillating and wavelength-shifting in visible blue
- transparent above 400 nm

L. Manzanillas et al 2022 JINST 17 P09007 [iopscience]

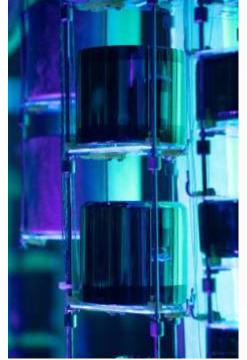
Y. Efremenko et al 2022 JINST 17 P01010

liopsciencel

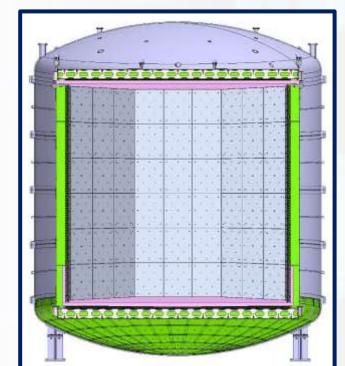


Teijin-DuPont TN-8065 SC granulate

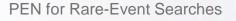
naphthalene dicarboxylate groups (π, π^*) -excitation (eximer formation)

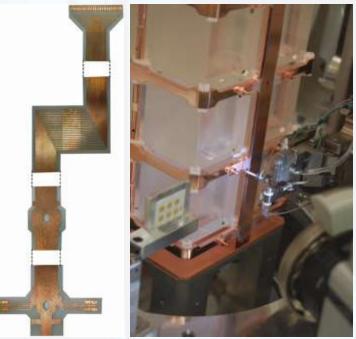

PEN is used by several current and future experiments

KamLAND2 LEGEND-200 DarkSide-20k -Zen


PEN test balloon to hold ¹³⁶Xe-loaded liquid scintillator

S Obara et al 2020 J. Phys.: Conf. Ser. 1468 012136 [iopscience]


PEN holder plates for enriched Ge detectors


Y. Efremenko et al 2022 JINST 17 P01010 [iopscience] Picture: M. Willers, LEGEND collaboration (2022)

Commercial PEN thin films on walls of outer liquid argon veto against neutrons

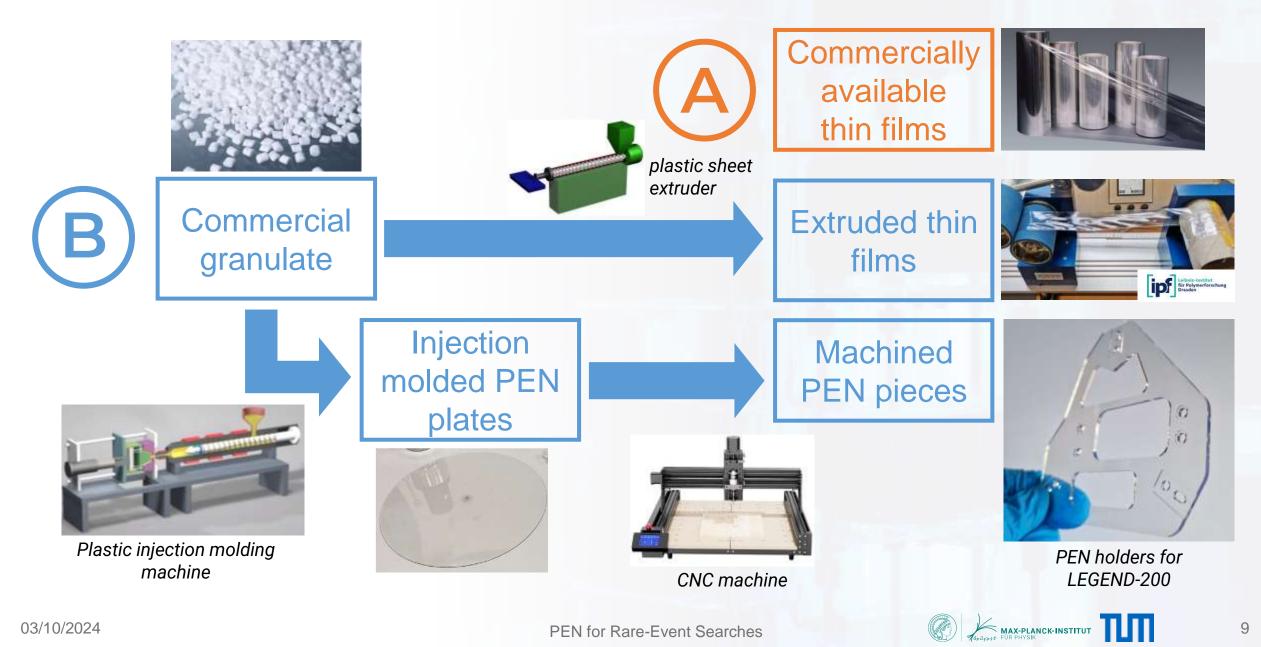
Choudhary, et al., LIDINE 2024 presentation [indico]

CUORE

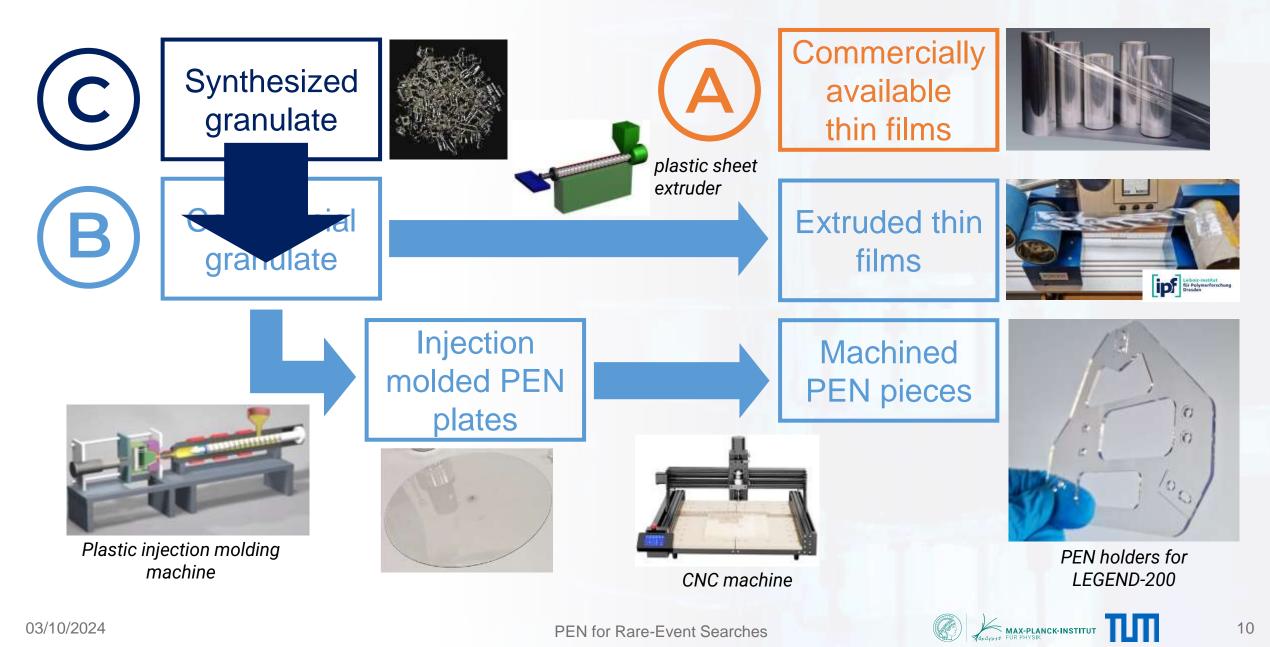
Electrical connectors for cryogenic detectors made of copper on PEN substrate

C Brofferio, et al. 2013 NIM A Vol 718 211-212 [elsevier] Right image: CUORE website [link]

03/10/2024


Production of PEN parts

Production of PEN parts for rare-event searches

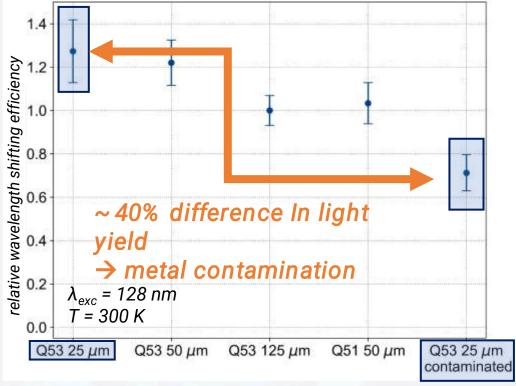


Production of PEN parts for rare-event searches

Production of PEN parts for rare-event searches

A: Commercially available PEN thin films

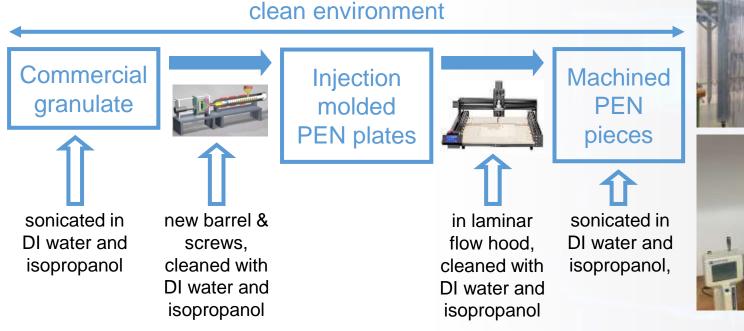
Advantages


- fast, cost-efficient installation
- large dimensions available

Challenges

- not optimized for optical use
- not optimized for radiopurity
- radioactive contamination possible
- variation between products & batches

Careful quality control and extensive surface cleaning are needed


Different available Teonex production grades and thicknesses Source: Araujo, et. al, LIDINE 2023 Poster Contribution [indico]

B: Parts made from commercial granulate

Advantages

- production in a clean environment
- cleaning between each production step
- control of structure, e.g., amorphous
- custom shape of final parts

LEGEND-200 PEN production

Commercial granulate cleaning

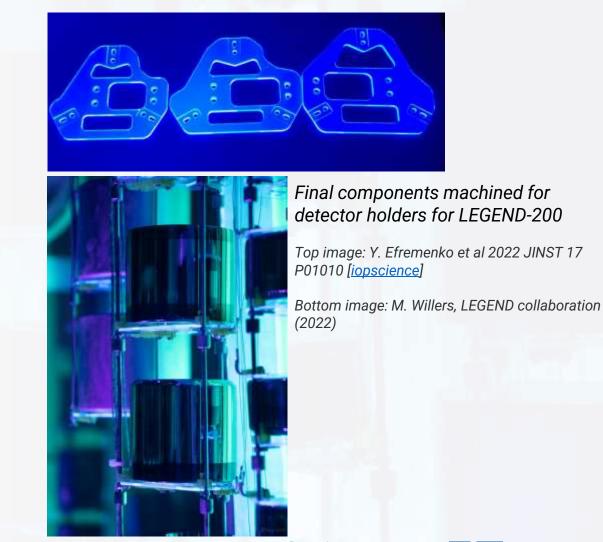
Injection molding machine in cleanroom

Images from: Y. Efremenko et al 2022 JINST 17 P01010 [iopscience]

CNC machine placed in laminar flow hood

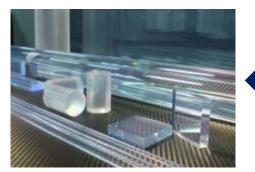
PEN for Rare-Event Searches

03/10/2024

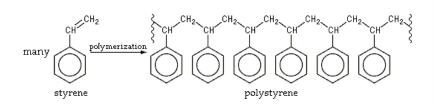

B: Parts made from commercial granulate

Challenges

- expensive machinery needed
- Imited in shapes and dimensions
- granulate not optimised for radiopure, optical production


An extensive workforce is needed with strict procedures for cleaning

LEGEND-200 PEN production



C: Synthesis of PEN polymer

Other plastic scintillators

- liquid monomer available, e.g., styrene
- mixed with fluor dopants and radical initiator
- heating or exposure to UV
- casting in desired shape

- f more complicated
- f higher temperature
- condensation of reaction by-products
- use of two catalysts
- no fluors needed
- adaptability

Synthesis of PEN

- "monomer" in form of diester or diacid derivative
- combined with ethanol glycol
- transesterification with acid catalyst
- polycondensation with oxide catalyst

C: Parts made from self-synthesized granulate

Advantages

- modify reagents for improved optical performance
- eliminate additives (coloring, etc.)
- radiopure reagents
- full production chain in a clean environment

Challenges

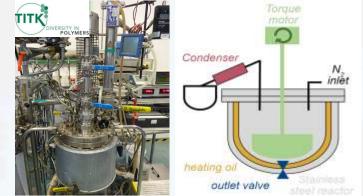
- challenging synthesis
- semi-industrial scale

clean environment

10-liter autoclave reactor at TITK

C: Synthesis of glycol-modified PEN

Autoclave reactor


- 10-liter stainless steel
- nitrogen-flushed or vacuum

Improving radiopurity

- sourced radiopure reagents
- purified by distillation or re-crystallization

Catalysts

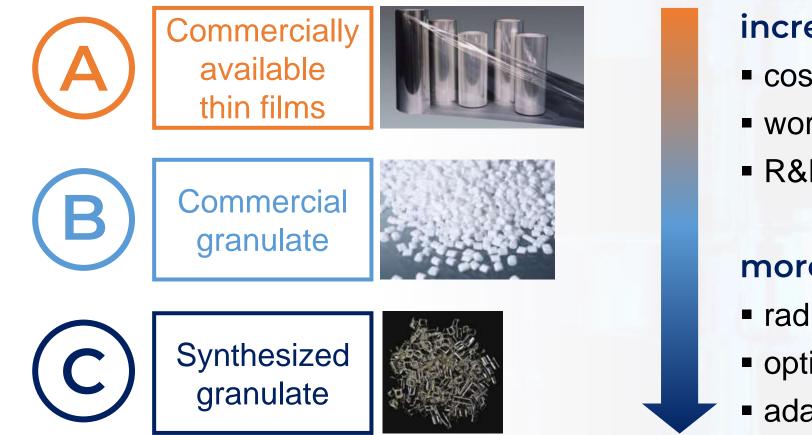
- magnesium acetate:
 - improved transparency
 - no neutron activation
- germanium dioxide:
 - Ge detector production
 - does not produce flakes in product

10-liter autoclave reactor at TITK

DMN before and after recrystallization

DUMBER OF CONTRACTOR OF CONTRA

CHDM distillation setup


Residue after CHDM distillation

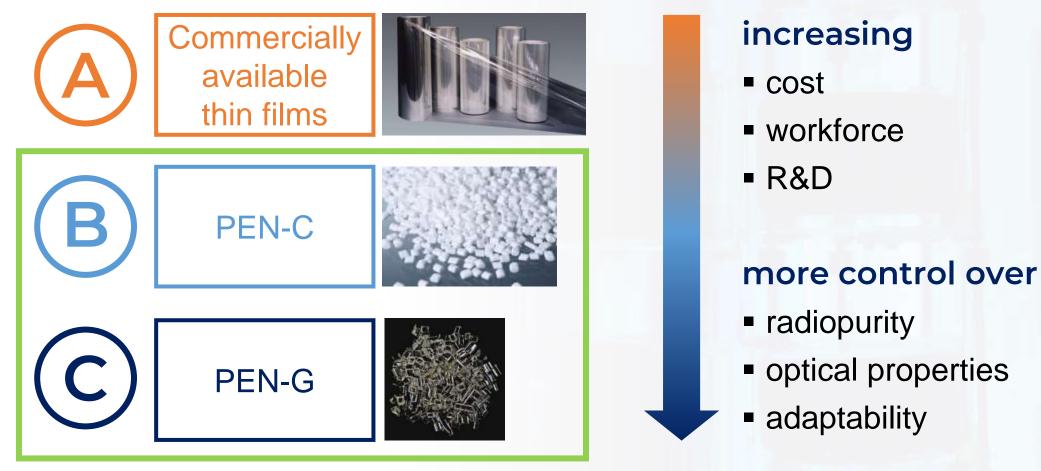
Glycol-modification

- added cyclohexanedimethanol (CHDM)
- prevents crystallization

Comparison between PEN parts

increasing

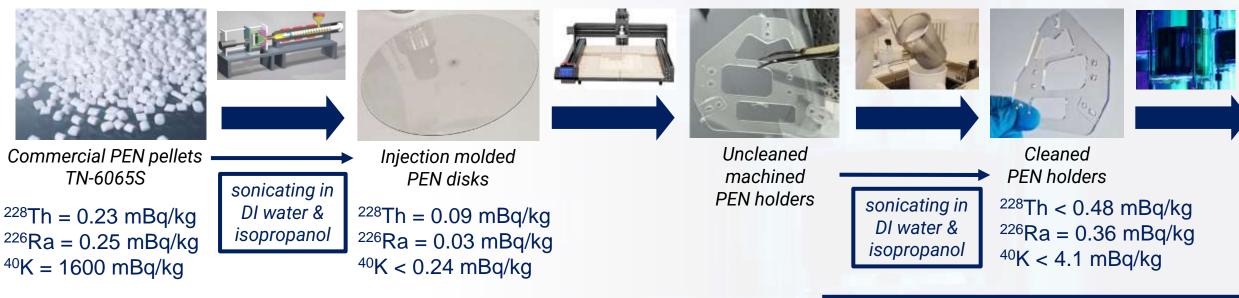
- cost
- workforce


R&D

more control over

- radiopurity
- optical properties
- adaptability

Comparison between PEN parts



Topic of this talk

Radiopurity of PEN

Comparison of radiopurity between PEN products

Data from Y. Efremenko et al 2022 JINST 17 P01010 [iopscience] and M. Laubenstein, LEGEND

Radiopurity of PEN-C

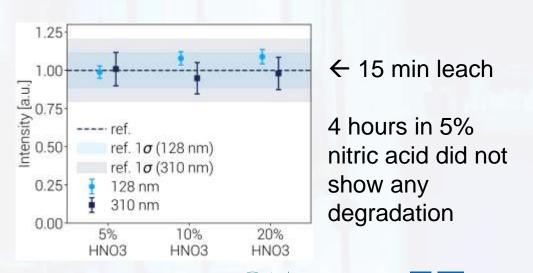
- ⁴⁰K contamination removed by cleaning
- no introduction of ²²⁸Th,
 ²²⁶Ra during production

PEN for Rare-Event Searches

Cleaning PEN with nitric acid

Removal of surface contamination

- leaching of PEN holders in 5% nitric acid for 4 hours
- Leachates contain ²³²Th and ²³⁸U contamination


Optical Performance

- Nitric acid might deteriorate optically active surface
- VUV radiation is absorbed in first few hundred nanometers
 → sensitive to surface quality
- Check VUV performance after leaching

Sample		²³² Th		²³⁸ U	
Weight [g]		ppt	\pm inst	ppt	± inst
PEN #1	leach #1	0.071	0.013	0.09	0.04
0.7907	leach #2	0.004	0.005	0.0068	0.0017
PEN #2	leach #1	0.10	0.03	0.031	0.011
0.7136	leach #2	0.0045	0.0015	0.007	0.002

Description	Replicate	Sample wt [g]	²³² Th ppt	²³⁸ U ppt
	1	0.2745	< 1.13	< 1.98
PEN #1	2	0.2481	< 1.30	< 2.08
	3	0.2655	< 1.22	< 1.94
PEN #2	1	0.2784	< 1.02	< 1.81
	2	0.1408	< 2.02	< 3.57
	3	0.2940	< 0.97	< 1.71

L-200 PEN data from Y. Efremenko et al 2022 JINST 17 P01010 [iopscience]; ICP-MS by M. Laubenstein

MAX-PLANCK-INSTITUT

Comparison of radiopurity between PEN products

Synthesized

granulate

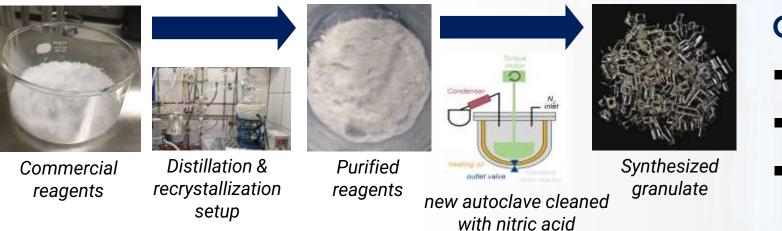
Commercial reagents

Autoclave reactor

PEN-G Synthesis

- autoclave reactor cleaned manually
- reagents not purified
- not performed in cleanroom

ICP-MS of synthesized PEN-G granulate			
Isotope	ppt (bulk)		
Th-232	16.8 ± 5.1		
U-238 62.7 ± 18.8			
Comparison to L-200 PEN (bulk)			
Th-232	< 2		
U-238 < 2			


L-200 PEN data from Y. Efremenko et al 2022 JINST 17 P01010 [iopscience] ICP-MS by M. Laubenstein **Granulate from PEN-G synthesis**

- baseline for future improvements
- significant uranium & thorium content

Comparison of radiopurity between PEN products

Clean PEN-G Synthesis

- In cleanroom environment
- new glassware & reactor
- purified reagents

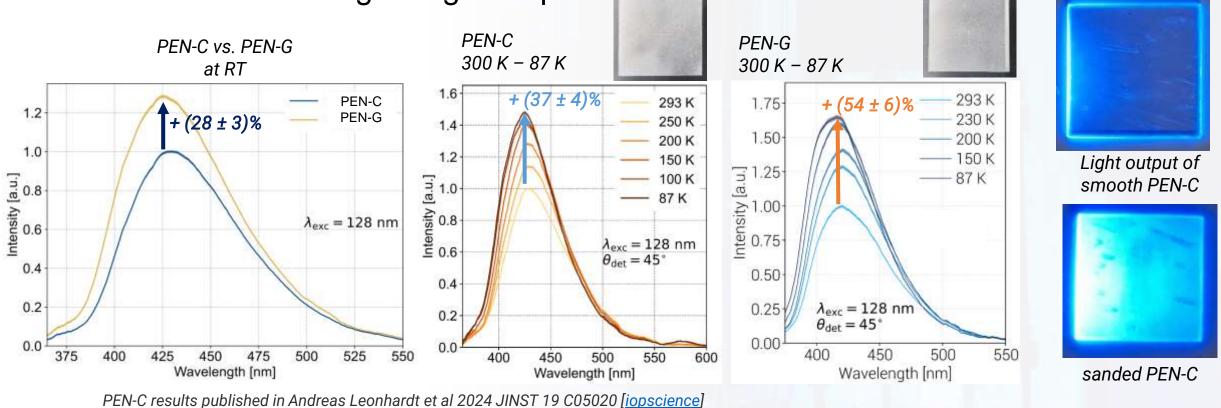
clean environment

Synthesis with purified reagents

Improved color

Synthesis with purified reagents

- improved color of granulate
- molded test pieces in production
- ICP-MS of reagents in progress


Optical Performance

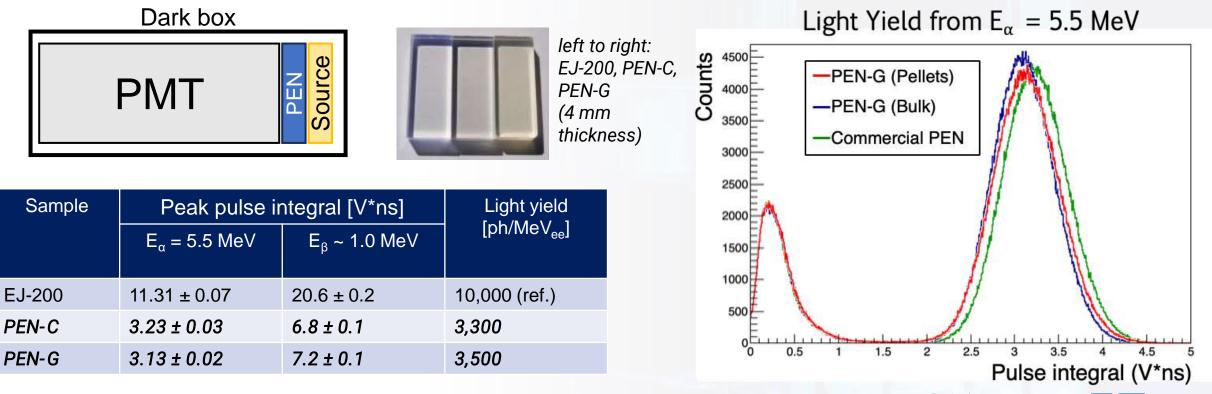
Optical performance of PEN-C and PEN-G

Comparison of Wavelength Shifting

- molded from commercial and synthesized granulate
- surfaces sanded for higher light output

Wavelength shifting efficiency of PEN-G exceeds PEN-C at RT and 87 K

PEN for Rare-Event Searches



Optical performance of PEN-C and PEN-G

Comparison of Scintillation

- molded from commercial and synthesized granulate
- excitation with ²⁴¹Am and ²⁰⁷Bi source

Scintillation yield of PEN-G comparable to PEN-C

03/10/2024

PEN for Rare-Event Searches

Summary & Outlook

Polyethylene Naphthalate

Radiopure Self-vetoing

Long-term stable Multifunctional

commercial films

- successfully used in several experiments
- strong variation in product
- risk of bulk contamination
- commercially available

commercial granulate

- successful implementation in LEGEND-200
- clean machining procedure
- removal of granulate surface contamination
- limited control of product parameters

Scalable & available

DEN

- necessary for future rareevent search experiments
- full control over product parameters
- improved optical properties
- techniques for radiopure production developed

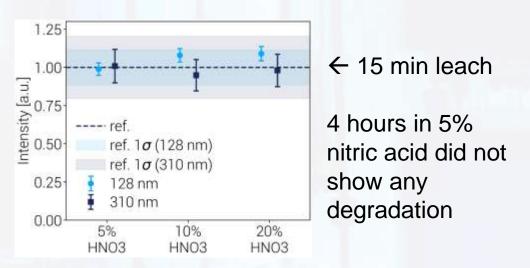
28

PEN for Rare-Event Searches

Cleaning PEN with nitric acid

Removal of surface contamination

- leaching of PEN holders in 5% nitric acid for 4 hours
- Leachates contain ²³²Th and ²³⁸U contamination


Optical Performance

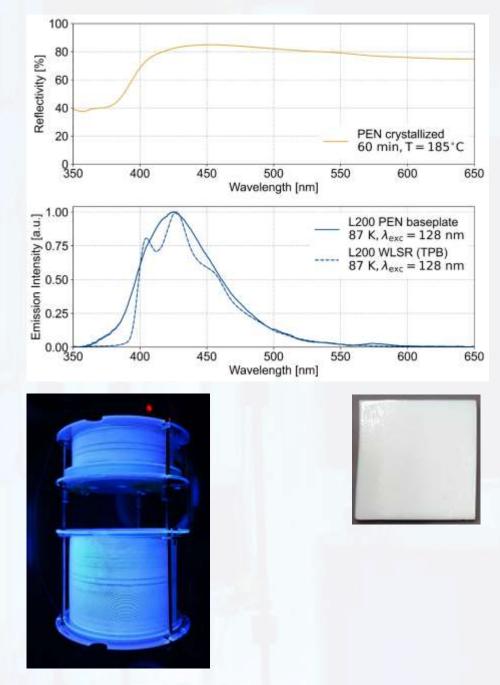
- Nitric acid might deteriorate optically active surface
- VUV radiation is absorbed in first few hundred nanometers
 → sensitive to surface quality
- Check VUV performance after leaching

Sample		²³² Th		²³⁸ U	
Weight [g]		ppt	\pm inst	ppt	± inst
PEN #1	leach #1	0.071	0.013	0.09	0.04
0.7907	leach #2	0.004	0.005	0.0068	0.0017
PEN #2	leach #1	0.10	0.03	0.031	0.011
0.7136	leach #2	0.0045	0.0015	0.007	0.002

Description	Replicate	Sample wt [g]	²³² Th ppt	²³⁸ U ppt
	1	0.2745	< 1.13	< 1.98
PEN #1	2	0.2481	< 1.30	< 2.08
	3	0.2655	< 1.22	< 1.94
PEN #2	1	0.2784	< 1.02	< 1.81
	2	0.1408	< 2.02	< 3.57
	3	0.2940	< 0.97	< 1.71

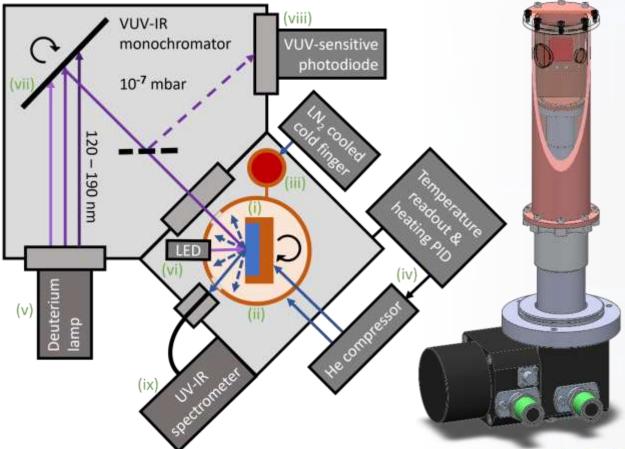
L-200 PEN data from Y. Efremenko et al 2022 JINST 17 P01010 [iopscience]; ICP-MS by M. Laubenstein

PEN for Rare-Event Searches


R&D for PEN

Crystallized PEN as single-part WLSR

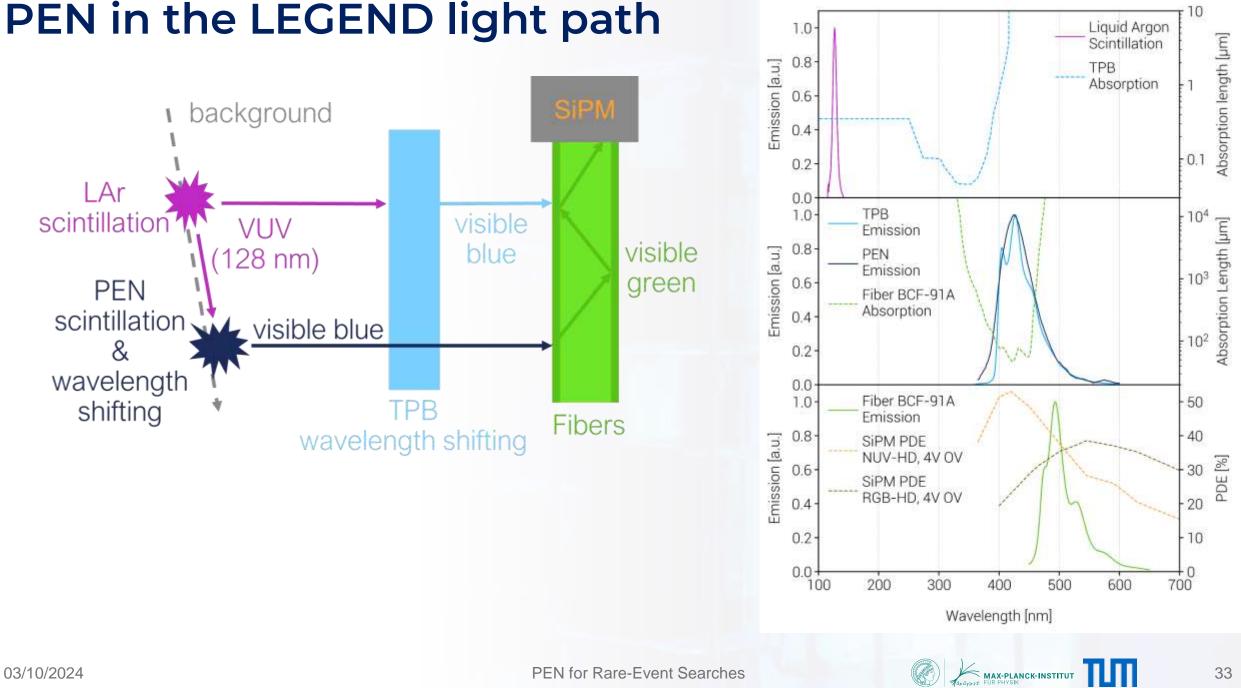
- eliminates reflector + wls coupling
- structural, long-term stable material
- can be produced in crystalline state easily


PEN enclosures for Ge detectors

- shield from ⁴²K beta-decay electrons
- tested at TUM LAr teststand enriched with ⁴²Ar
- talk by M. Schwarz at LRT2024

Cryogenic VUV spectrofluorometer

Sample held at temperatures between 300 K - 33 K.


- Excited by
 - deuterium lamp (120 nm 190 nm)
 - LED (310 nm or 420 nm).

Surface effect from condensation of water/ice below 150 K mitigated by cryo-shield and UV LED cross-check.c

A novel cryogenic VUV spectrofluorometer for the characterization of wavelength shifters **Andreas Leonhardt et al 2024 JINST 19 C05020** [iopscience]

03/10/2024

PEN for Rare-Event Searches

PEN-G Synthesis

Detailed in B. T. Hackett, PhD Thesis, University of Tennessee (2022): "Improving Sensitivities in 0vββ Decay Searches by Utilizing PEN as a Structural Scintillating Material"

erial"	H ₃ CO Dimethyl-2,6- naphthalenedicarboxlate (DMN)	Cyclohexane dimethanol (CHDM) + HO HO HO OH HO CHDM) C
	HO J J J J OH Bis(hydroxyethyl) 2,6-	→ [→ [Polyethylene
	naphthalenedicarboxlate	naphthalate

Sample	Intrinsic viscosity
Commercial PEN	0.47 g/dL
PEN-G #1	0.52 g/dL
Standard PET	~0.6 g/dL
PEN-G #2	0.6 g/dL

Comparison of radiopurity between PEN products

ICP-MS				
Element	Unit	PEN Teonex Q51 25 µm (contaminated)		
Zn	ppm	4.1 +/- 1.2		
In	ppm	15.4 +/- 4.6		
W	ppm	20.4 +/- 6.1		

Source: S. Nisi & F. Ferella, LEGEND internal

Gamma Screening				
Element	PEN Teonex Q51			
K-40	mBq/kg	< 2.0 (90% C.L.)		
Ra-226	mBq/kg	< 1.4 (90% C.L.)		
Th-228	mBq/kg	< 3.6 (90% C.L.)		

Source: B. Majorovits, Final Symposium of the Sino-German GDT Cooperation, 2015 [indico]

Radiopurity of commercial PEN films

- depends on production site and batch
- unclear if bulk or surface contamination

Optical performance of commercial PEN films

	Light `	rield of PEN relative t	o TPB		
PEN sample	Relative LY	Reflector	Surface	Temp.	Source
Teonex Q83 125 µm	~ 50%	no	sanded	RT	Araujo, MSc Thesis (2019), TUM [<u>researchgate</u>]
Teonex Q53 125 µm (Goodfellow)	(75 ± 7)%	Tetratex	sanded	87 K	Araujo et al Eur. Phys. J. C 82, 442 (2022) [<u>springer]</u>
Teonex Q53 125 µm (Millipore Sigma)	(24.7 ± 0.8)%	ESR (adhesive)	smooth	87 K	Y. Abraham et al 2021 JINST 16 P07017 [<u>iopscience</u>]
Teonex Q53 125 µm (Goodfellow)	(34.0 ± 1.1)%	ESR (no adhesive)	smooth	87 K	Y. Abraham et al 2021 JINST 16 P07017 [<u>iopscience</u>]
Teonex Q51 25 µm	(47.2 ± 5.7)%	ESR (no adhesive)	smooth	87 K	Boulay et al Eur. Phys. J. C 81, 1099 (2021) [<u>springer]</u>

Table adapted from Araujo et al Eur. Phys. J. C 82, 442 (2022) [springer]

Teonex Q53 125 μm	PEN film	Relative Light Yield
	Teonex Q53	100 %
PEN-C extruded films	Extruded (smooth)	(28 ± 2) %
70 µm	Extruded (sanded)	(125 ± 4) %
03/10/2024		

Optical Performance varies extremely by

- production grade (Q51, Q53, Q83)
- reflector backing (+ adhesive)
- vendor, batch, etc.

