Impact of Radioactivity on Quantum Circuits: European Laboratories

Laura Cardani, INFN

Low Radioactivity Techniques, 1-4 October 2024, Kraków, Poland

Motivation

Superconducting qubits should be **isolated** from environment

But they look a lot like particle detectors

Energy deposit in the chip —> charges/phonons —> break Cooper pairs in sensor/qubit

In this Talk

- Effects of Radioactivity in Superconducting Qubits;
- Sources of Radioactivity;
- Mitigation strategies;
- Perspectives;

0> z

In this Talk

Istituto Nazionale di Fisica Nuclea

|0> z

- Effects of Radioactivity in Superconducting Qubits;
- Sources of Radioactivity;
- Mitigation strategies;
- Perspectives;

4

- Faced a qubit to a fast-decaying source
- Lifetime of qubit increases when source decays

Conclusion:

The quasiparticle background induced by radioactivity is $x_{QP} \sim 7 \times 10^{-9}$

Radioactivity will limit the performance of qubits with lifetime > 1 millisec

Note: qubit of this study had T1~ 30-40 μs of but today 0.5 millesec \underline{proved}

Is it so simple?

Radioactivity produces "pulses" and not an "average" QP pollution.

During the "pulse", the level of QP can reach 10-4 (well above the 10-9)

L. Cardani et al, Nature Comm. 2021

Radioactivity produced Correlated Errors

- Istituto Nazionale di Fisica Nucleare
- Measurement of an array with 4 qubits performed by the groups of R. McDermott
- Charge jumps for single qubit: 1 / (75 sec)*
- Simultaneous jumps in 2-qubits:
 - 54% correlation prob. for $\Delta L = 340 \ \mu m$
 - 46% correlation prob. for $\Delta L = 640 \ \mu m$
 - For $\Delta L = 3 \text{ mm}$ random coincidences
- Consistent with rate of impacts from μ and γ 's

Wilen et al., Nature 594, 369-373 (2021)

* I changed unit compared to the original paper for consistency in the talk

Validation

Google group performed a similar measurement on a "real" quantum processor (sycamore)

Developed a protocol for qubits operation that allowed to monitor errors "online"

Mc Ewen et al, Nature Physics 18 107-111 (2022)

Confirmed importance of mitigation of radioactive impacts

Also...

Two Level System (TLS): dominant loss mechanism in qubits (more dangerous than radioactivity)

Destabilises qubits on a ~hour timescale

Radioactivity causes TLS "scrambling" —> radiation makes multiple TLSs jump in frequency and couple (or decouple) to qubit, increasing/decreasing its half-life

In this Talk

- Effects of Radioactivity in Superconducting Qubits;
- Sources of Radioactivity;
- Mitigation strategies;
- Perspectives;

|0> Z

Component		²³² Th	²³⁸ U	²³⁵ U	⁴⁰ K	137Cs
		[mBq/kg]	[mBq/kg]	[mBq/kg]	[mBq/kg]	[mBq/kg]
PCB		(18000 ± 1000)	(11500 ± 400)	(710 ± 110)	(12000 ± 1000)	< 30
Box		(5410 ± 330)	(4200 ± 200)	(230 ± 50)	(4200 ± 500)	< 40
Holde	er	< 1.5	< 1.2	< 4	< 9	< 0.6
Magnetic	Shield	< 8.4	< 8.3	< 8.4	< 35	< 2.7
SMA	\	(46 ± 13)	(42 ± 10)	(70 ± 30)	(240 ± 90)	< 10
Cu coax o	cables	(54 ± 12)	(44 ± 11)	(34 ± 17)	(740 ± 130)	< 12
Cryogenic	switch	(1880 ± 100)	(1340 ± 60)	(130 ± 30)	(2200 ± 300)	< 11.2
Circula	tor	< 310	< 330	< 410	< 2000	< 60
Dual-junct. c	irculator	< 250	< 380	< 380	< 2600	< 60
Triple-junct.	isolator	< 190	< 240	< 220	< 2000	< 50
Attenua	tors	< 52	(200 ± 20)	< 47	< 140	< 13
Low Pass	Filters	(23 ± 4)	< 9.1	(60 ± 10)	< 100	< 1.9
NbTi ca	bles	< 750	< 1000	< 380	< 7000	< 230
Cryogenic a	mplifier	< 890	< 1000	< 850	< 10000	< 210
Cu-Be ca	ables	(240 ± 40)	< 78	(350 ± 90)	< 500	< 20
Stycast	glue	(53 ± 4)	(9400 ± 900)	(350 ± 30)	(290 ± 40)	< 2.2
Cryogenic	Grease	< 10	< 11	< 4.5	< 87	< 5

Cryostat

L. Cardani et al, Eur. Phys. Journ C 83, n.o 94 (2023)

Source	"Standard"	LNGS + Shield	* I changed unit compared to the pape for consistency in the presentation
Lab y rays	1 / (50 sec)	1 / (1000 sec)	
Muons	1 / (100 sec)	0	
Materials	1 / (200 sec)	1 / (200 sec) 🔶	Almost entirely dominated by the PCB
Neutrons	1 / (2 hours)	0	

- More recent works of radio-assay and simulations-Canfranc, <u>PNLL</u> and <u>NIST</u>
- No surprises :)

Validation

P. M. Harrington et al

- Correlated errors: 1 / (100 sec)
- Only 17% of correlated errors come from cosmic rays
- Cosmic rays affect all a large number of qubits

Xue-Gang Li et al

- Cosmic rays account for 19% of the events
- Correlated errors: 1 /(12.3 sec)
- With minimal lead shield: 1/ (16.7 sec)
- Evacuation time of 20-40 μs, 2 orders of magnitude faster w.r.t. Google (Tantalum?)

L. Cardani - INFN

13

Low Radioactivity Techniques 2024

Validation (2)

- ICRQ (Interaction of Cosmic Rays with Qubits) project, funded by Spain (Pol Forn-Diaz)
- Measurement of two Ge light detectors (45x45x0.3 mm) with NTD Ge thermistor
- One chip vertical, one chip horizontal, simultaneous measurement

From E. Bertoldo's talk at the RISQ workshop - May 2024

In this Talk

- Effects of Radioactivity in Superconducting Qubits;
- Sources of Radioactivity;
- Mitigation strategies;
- Perspectives;

Encouraging Results

Superconducting resonators at LNGS

Improvement of int. quality factor x 2-3

L. Cardani et al, Nature Comm. 2021

Encouraging Results

Superconducting resonators at LNGS Improvement of int. quality factor x 2-3 Resonator A Resonator B Resonator C 100 $\Gamma_B (mHz)$ 10 10^{5} $Q_i @ ar{n}$ 70 60 10^{4} R G Κ R G Κ R G Κ • lead off \blacktriangle ThO₂ silver paste vacuum grease

L. Cardani et al, Nature Comm. 2021

(gradiometric) fluxonium at LNGS:

Tremendous improvement of frequency locking at the sweet spot

D. Gusenkova et al, Appl. Phys. Lett 120 054001 (2022)

Encouraging Results

Not (yet)

Less encouraging results

GrAI qubit already measured above ground

Characterization at LNGS in shielded configuration w.r.t exposed to a strong Th sources

 $\Gamma_t \leq 1/50\,ms$

The TLS environment is not affected by underground operation

Chip with 8 transmon qubits

Operated at LNGS and at the SQMS Quantum Garage

Counted the number of errors in a *single* transmon

In this Talk

- Effects of Radioactivity in Superconducting Qubits;
- Sources of Radioactivity;
- Mitigation strategies;
- Perspectives;

vancing Quantum Science in EU: labs

- LNGS: partnership with SQMS center + external users
 - "<u>leti</u>" Cryostat already equipped and available
 - New Cryoplatform in construction

- Roma ULTRA Lab: new facility with lead shielding and cryogenic muon veto
- LSC: measurements in the CROSS fridge + installation of a fridge dedicated to qubits

Advancing Quantum Science in EU (2)

- ACE-SuperQ (PI: A. Mariani, 2024–2026)
- Develop a cryogenic muon veto with >90% efficiency and < 1% dead-time

Smaller KID (2x4 cm²) used as a central detector in our first prototype (it will be replaced by a superconducting quantum chip)

Advancing Quantum Science in EU (3)

- COLD project (funded by Italian Ministry of Education~ 800 keuro, PI: S. Di Domizio)
- Mitigate phonon propagation through traps (Henriques 2019, Karatsu 2019, Iaia 2022...)
- Widely demonstrated with microwave resonators
- First evidence with qubits using copper traps
- COLD is investigating superconductors to replace copper

- Procured 4 commercial qubits chip
- Cryogenic test of Ti deposition: done
- Measurements planned by the end of 2024

Advancing Particle Physics

- Qubits are very sensitive to radioactivity
- Can we turn this into an advantage?
- Exposed qubits to a gamma source with increasing intensity: errors increased linearly

De Dominicis et al, 2024

- With rudimental algorithms for data reconstruction, efficiency of ~10%
- Large room for improvement
 - Qubit design
 - Qubit operation
 - Analysis algorithms

WE WELCOME NEW COLLABORATORS!

Thanks for the attention

The quantum community is working also on "on-chip" mitigation strategies

- On-chip mitigation strategies:
 - Phonon traps (Henriques 2019, Karatsu 2019. De Visser 2021, Patel 2017, Iaia 2022...)
 - Gap engineering (Yamamoto 2006, Catalan 2022, McEwan 2024,...)
 - Structures around the qubit (Martinis 2021, ...)
 - Qubit on different dices (Gold 2021, ...)
 - Algortithms (Chubb 2021, Xu 2022, Sane 2023, Fowler 2023, Baireuther 2023, ...)

Since ~2017 intense "cross-pollination" between the community of qubits and of particle physics: now we speak the same language :)

Intense effort in modelling/measuring the effects of radioactivity on qubits

Li et al: arXiv: 2402.04245 (23 feb 2024)-> direct measurements of μ in qubits

- McEwen et al: arXiv:2402.15644 (23 feb 2024) -> gap engineering to protect qubits
- Yelton et al: arXiv:2402.15471 (23 feb 2024) -> G4CMP modeling of phonon-QP poisoning
- Harrington et al: arXiv: 2402.03208 (5 feb 2024) -> synchronous measurements of μ in qubits
- Thorback et al, PRX Quantum 4, 020356 2023 -> effects of radioactivity on TLS
- And many others (phonon traps, ...)