
Status of the Liquid Scintillator for JUNO

Xin Ling (lingxin@ihep.ac.cn) on behalf of JUNO collaboration

1 The Juno Experiment

- The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kt liquid ulletscintillator (LS) detector for studies of various neutrino physics topics. The level of radioactivity background is an essential factor for the sensitivities.
- Determine mass ordering by $3\%/\sqrt{E}$ with 3σ in 6 yrs data taking. Rich physics programs in solar, supernova, atmospheric, geo-neutrinos, proton decay, exotic searches.

5 Distillation Plant

Goal: Removes heavy metals(²³⁸U, ²³²Th, ⁴⁰K) from LAB and further improves the optical properties **Principle:** Fractional distillation of LAB in partial vacuum, inside a column with 6 sieve trays and 30% internal reflux; only the purest vapours are extracted from the top. High-boiling contaminants accumulate in the un-evaporated liquid phase to be discharged. **Status:**

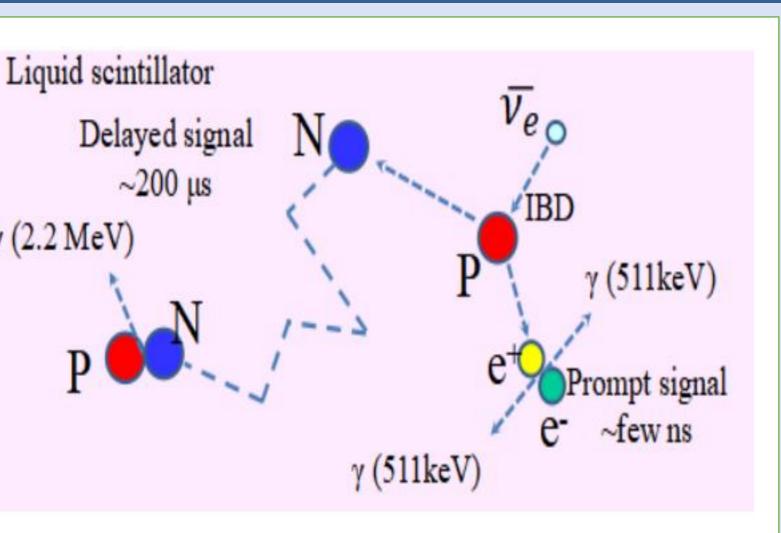
Fully commissioned

 absorption spectra of purified LAB meet expection. A.L. measurement result of purifed LAB is about 22m. U: <0.28ppq, Th: <0.22ppq

Distill	ation	column	param	eters

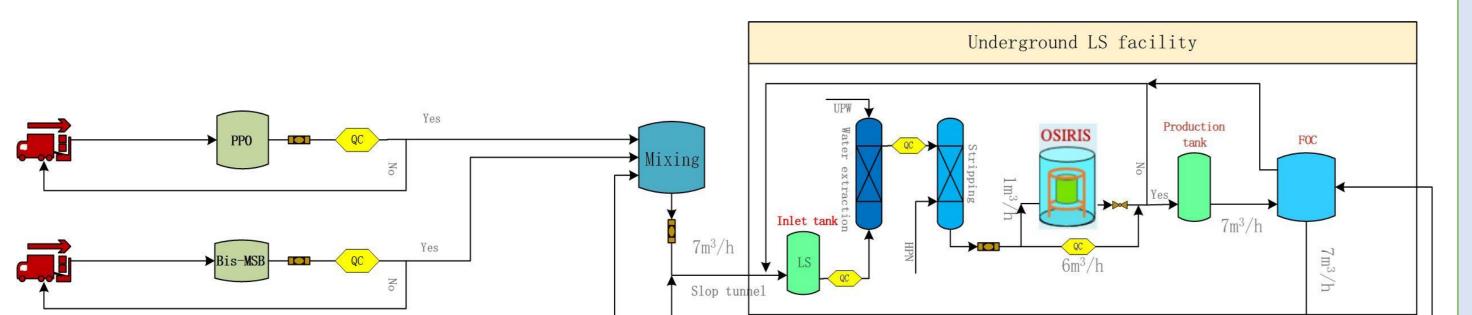
	N° trays	6
Height		7 m
	Temperature	210-220 °C
	Pressure	5 mbar
•	Internal reflux	~30%; max 50%
	Bottom discharge	max 100 L/h

6 Mixing Plant


Goal: Removes 238U and 232Th from PPO and bis-MSB and dilute and dissolve into LAB to produce LS.

2 Liquid Scintillator for Juno

Features:


- 20 kton, long term stability;
- LS attenuation length (A.L) >20 m @ 430nm;
- Light yield: 1665 p.e./MeV;
- $^{238}\text{U}, ^{232}\text{Th} < 1 \times 10^{-15} \text{ g/g} (\text{Min}), < 1 \times 10^{-17} \text{ } \gamma (2.2 \text{ MeV})$ g/g (Max)
- Recipe: LAB + 2.5 g/L PPO + 3 mg/L bis-**MSB**

QA/QC: ICP-MS(1e-15 g/g for LS; 1e-16 g/g for UPW), NAA, customized devices(A.L, Rn, Ra), Spectral analyzer, particle counting, OSIRIS

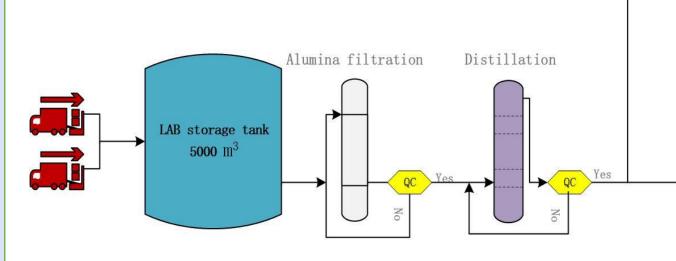
Purification system

- 5 purification sub-systems + 1 QC system+3 auxiliary system
- 7 m3/h for filling 6 month
- All LS plants were installed and under commisstioning

Principle: PPO and bis-MSB are added in high		
concentrations (105 g/L and 126 mg/L) to produce the Ma	aster	
Solution, then washed with HNO3 and rinsed twice with		
water. Finally, diluted with LAB to obtain the LS	Mixing	g plant parameters
Recipe:(2.5 g/L and 3 mg/L).	Master	105 g/L PPO
1 MS batch/day (420 kg PPO + 504 g bis-MSB + 4 m ³ L	Solutes	126 mg/L bis-MSB
Status:	Dissolving T	40°C
Fully commissioned	Acid washing	40°C with 5% HNO ₃
 ²³⁸U, ²³²Th reduced by both acid washing (1-2 orders) a 	N° acid washing	1 time1:2 (2 m ³ acid)
filtering (1 order). U: <0.30ppq, Th:< 0.24ppq	N° water washing	2 times, 1:1

7 Water Extraction plant

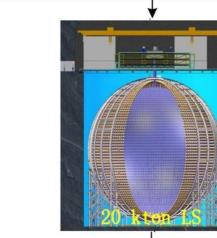
Goal: Removes polar contaminants and metal ions with ²³⁸U, ²³²Th and ⁴⁰K from LS **Principle:** Use of high-purity water to clean the liquid scintillator and remove radioactive metal ions from LS.


Status:

- Fully commissioned
- Water content <200 ppm after filters
- •A.L. and absorption spectra OK
- Extraction eff is 50%~70% @~1ppq level ■U: <0.30ppq, Th:< 0.24ppq

Extraction tow	er parameters
Water-LS ratio	1:3
Height	13 m
N° turbines	30
Temperature	Up to 70°C
Rotation speed	25-60 r/min

8 Gas Stripping Plant


1, Alumina Filtration plant 2, Distillation plant

3, Mixing plant 4, Water Extraction plant

5, Stripping Plant

6. OSIRIS

7, Filling Overflow Circulation plant 8, High Pure Nitrogen plant 9, Ultra Pure Water plant

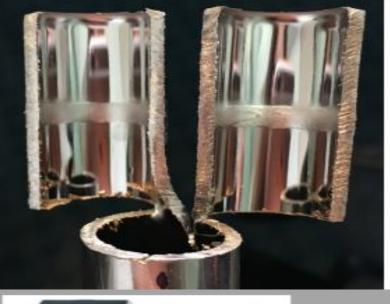
3 Requirements of LS Plants construction

Material requirement for LS plant

- Material of tank or pipe: SS304L or SS316L (Electro Polishing and low background).
- Material of O ring and other parts: Viton A or PTFE.

Cleanness and processing technology requirements

- Residual dust on the surface after cleaning should be < **0.1 mg/m²**, which will lead to 0.08g dust and 10^{-16} g/g U238/Th232 contamination in LS.
- Stainless steel inner surface roughness requirement Ra≤0.4µm .
- Welding: Orbital welding
- The final precision cleaning particle cleanliness level in rinsing water needs to be reached JUNO 50 level


Cleanning Quality Check

- Resistivity test for clean water •
- PH test
- Visual inspection
- White cloth inspection
- Ultraviolet light
- Endoscopic inspection
- Surface roughness test Ra≤0.4µm Particle counter test in washed water
- Level 50
 - Absorption spectroscopy
- ICP-MS measure the U/Th in washed water, residual particle content

JUNO 50 level for rinsing water.

eanliness level	Particle Size. µm	Count per liter
50	5	1660
50	15	250
50	25	73
50	50	10

Orbital welding sample

0.0250 0.0200 20.0150 0.0100 0.0050

Goal: Removes gaseous impurities: 222Rn, 85Kr, 39Ar and O2 (oxidation, photon quenching)

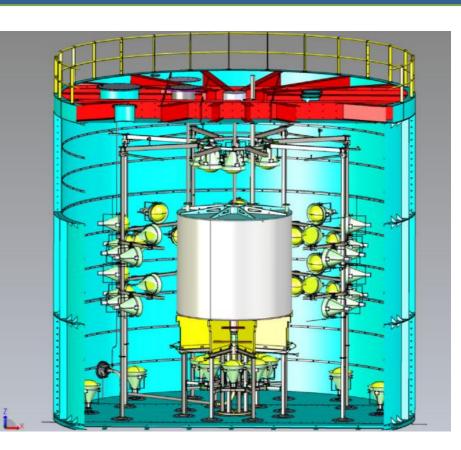
Principle: Gaseous impurities in the IS are transferred to the stripping gas (high purity N2) by desorption mechanisms.

Status:

Fully commissioned

• Good H₂O removal efficiency: 154 ppm 20 ppm Excellent particle counting (no particles ≥ 0.3)

U: <0.30ppq, Th:< 0.24ppq


Stripping column parameters		
Packing	Pall Rings, 13mm	
Height	9 m	
Diameter	500 mm	
Temperature	70°C	
Pressure	250 mbar	
N ₂ flow rate	15 Nm ³ /h	

9 OSIRIS system

Goal: A 20-t detector to monitor radiopurity of LS before and during filling to the central detector

Principle:

- Few days: U/Th (Bi-Po) $\sim 1 \times 10^{-15}$ g/g (reactor baseline case)
- 2~3 weeks: U/Th (Bi-Po) ~ $1 \times 10-17$ g/g (solar ideal case)
- Other radiopurity can also be measured: ¹⁴C, ²¹⁰Po and ⁸⁵Kr Status:
- Fully commissioned

10 HPN

μm

Blue point test

U/Th<0.1ppt

510 810 710

4 Alumina Filtration Plant

Goal: Removes optical impurities and increases the attenuation length of LAB **Principle:** Al₂O₃ powder retains optical contaminants and enhances the LAB transparency when LAB pumped through it **Status:**

Fully commissioned

 Successful removal of optical contaminants in the range 360-400 nm, up to 20 BV. •A.L.: raw LAB from ~ 21 m to ≥ 23.5 m after AFP

No extra ²³⁸U, ²³²Th contamination introduced U: <0.31ppq, Th: 0.9±0.1ppq

AFP parameters

8 (7+1)
2.8 m
0.6 m
0.5 m ³
1 m³/h (2 BV/h)
220 & 50 nm

Principle: The HPN plant uses activated carbon to adsorb radon at low temperature to purify nitrogen

Status:

- The commissionning result (after 10 days running):
 - a. Radon concentration: 5.5 \pm 0. $6uBq/m^3 < 10 uBq/m^3$.
 - b. Krypton concentration: 18.5 ppt <50 ppt.
 - c. Argon concentration : 18 ppt <50 ppt

11 UPW

Goal: Ultra pure and low radioactivity water for Water Extraction: U&Th < 1e-16 g/g; $Rn < 1mBq/m^3$; UPW flow rate 2.5 m³/h <200 @>0.05*u*m Particle $<1 \text{ mBq}/m^3$ Radon level Radium level <10 µBq/m³ <2×10⁻¹⁶ g/g U & Th

The 2024 Low Radioactivity Techniques(LRT) Workshop, 1-4, Oct, 2024, Kraków, Poland