A ¹⁴C Screening Setup for Liquid Scintillator at JUNO

Mingxia Sun (IHEP)

on behalf of the ¹⁴C measurement group

Chuanya Cao,Gaosong Li,Xiaojie Luo,Yuanxia Li,Liangjian Wen,Wei Wang,Fei Xiao,Yijun Xie,Jiaxuan Ye,Jie Zhao

Low Radioactivity Techniques (LRT 2024) 1-4 October 2024, Kraków, Poland

Jiangmen Underground Neutrino Observatory

• Schematic design of JUNO

(Photograph by Chenyang at 20,09,2024)

1) Detector Design

- Target mass: ~20 kton linear alkylbenzene (LAB) based liquid scintillator
- Equipped with 17,612 20-inch PMTs + 25,600 3-inch PMTs
 - \rightarrow **78%** photocathode coverage
- Light yield: ~1665 p.e./Mev
- Energy resolution: ~3%@1MeV
- 2) Physics Potential*
- The Neutrino Mass Ordering
- Precise determination of the neutrino oscillation parameters
- Solar neutrino
- Atmospheric neutrino
- Supernova neutrinos
- Geoneutrinos

*Paper: "Potential to Identify the Neutrino Mass Ordering with Reactor Antineutrinos in JUNO"

Why measure ¹⁴C?

- 1) Intrinsic characteristic of ¹⁴C:
 - Q of β decay: **156 keV**

2) ¹⁴C/¹²C concentration influence on JUNO :

Main source in LAB based liquid scintillator:

 \rightarrow LAB - C₆H₅C_nH_{2n+1} (n=10 ~ 13)

• High rate of <u>14C pile-up</u> will affect the energy resolution

 \rightarrow 1 ×10⁻¹⁷ g/g 20 kton LS ~30 kHz contribution

- Low energy solar neutrino measurements*
 - \rightarrow baseline: 1 ×10⁻¹⁷ [g/g]

 \rightarrow ideal: 1 ×10⁻¹⁸ [g/g] possible for <u>pp solar neutrino</u>

*Paper: "<u>Neutrino Physics with JUNO</u>"

Previous ¹⁴C measurement experiments

Setup	Borexino CTF ¹	LZ Screener ²	Pyhäsalmi ³	A setup at BNO ⁴	A setup at GSNL ⁵
Sample Volume(L)	4800 (PC based)	28 (LAB based)	1.4 (LAB based)	1.5 (LAB based)	2 (PXE based)
¹⁴ C/ ¹² C concentration sensitivity(g/g)	10 ⁻²⁰	10 ⁻¹⁹		~10 ⁻¹⁸	~10 ⁻¹⁹
Spectral fitting model	Theoretical beta-spectrum (¹⁴ C) convolved detector response + one function (background)				

- High sensitivity like CTF and LZ screener needs large LS volume and sophisticated design
- Simple parameterized background model

Design goal : <u>~10⁻¹⁸ g/g sensitivity (90% CL) on ~1 week scale with ~1L sample for fast screening</u>

- ¹ Borexino CTF: <u>"Counting test facility for the Borexino experiment"</u>
- ²LZ Screener: <u>"A liquid scintillation detector for radioassay of gadolinium-loaded liquid scintillator for the LZ Outer Detector"</u>
- ³ Pyhäsalmi: <u>"New Low-Background Laboratory in the Pyhäsalmi Mine, Finland"</u>
- ⁴ BNO: <u>"Measurement of the 14C Content in Liquid Scintillators by Means of a Small-Volume Detector"</u>
- ⁵ GSNL: <u>"Measuring the 14C isotope concentration in a liquid organic scintillator at a small-volume setup"</u>

Key challenges

- 1) Low energy detection threshold
 - High photon collection efficiency + low trigger threshold

2) Low-background control

- Cleanliness of detector materials
- Muon flux shielding \rightarrow set on JUNO site, ~650 m rock overburden, muon flux in the detector is ~0.004 Hz/m²
- Reducing radon concentration inside detector
- Shielding from background emitted from surrounding rocks

3) Fast screening

- Easy to operate and change sample
- 4) Good understanding of background

Physical Detector

1) Detector:

- One acrylic vessel for a 1 L LS container
 - \rightarrow LS based on JUNO formula: 2.5 g/L PPO and 3 mg/L bis-MSB
 - \rightarrow Vessel wrapped with ESR film
- Two ultra-low-background PMTs R11410 borrowed from PandaX
 - \rightarrow Th/U ~2 mBq/pc
- 2) Passive shielding:
 - ~50 cm lead layer
 - ~20 cm OFHC (Oxygen-Free High-Conductivity) copper
 - \rightarrow Surface treatment + nylon film to protect from dust and radon
 - ~20cm thickness Boron-born PE on the bottom
- 3) Cleanliness control
 - Nitrogen purge into chamber
 - Several covers to avoid light and radon ingress

Electronic

- Kapton coaxial cable inside detector
 - \rightarrow less outgassing, light mass
- RG316 coaxial cable outside
 - \rightarrow more durable

2)Trigger condition:

- PMT coincidence within 64 ns window (threshold at 1.p.e.)
- PMT performance:
 - \rightarrow each PMT: ~500 Hz dark count rate

3) Data Acquisition:

- Digitized window: ~2 us
- Waveform recorded for off-line analysis

Copper Surface Process

Factory processing 1)

• Surface roughness < 0.4 um \rightarrow reduce dust depositing on the surface

copper recycled from a >10-year old HPGe detector

Cleaning treatment on JUNO site 2)

- Degreasing
- Acid surface wiping
- Washing with high-pressure water gun
- Alcohol cleaning and nitrogen drying
- Radon-resistant nylon film packaging

ICP-MS* measurement result comparison:

Surface measurement(~0.2mm)	Th/U
Original	~10 ppb
After surface cleaning	~ 0.1 ppb

Total copper shield mass: ~500 kg

*Paper: "Co-precipitation approach to measure amount of ²³⁸U in copper to sub-ppt level using ICP-MS"

Detector sensitivity improvement

- ¹⁴C measurement setup: started in 2022, with two background-control works scheduled in 2023.
 - 1) 1st (from ~0.207 Hz \rightarrow ~0.022 Hz):
 - Increasing shielding thickness
 - Surface process on the copper closer to detector chamber^{*}
 - 2) 2^{nd} (from ~0.022 Hz \rightarrow ~0.012 Hz):
 - Surface process on all copper*

 \rightarrow The raw event rate above threshold 40 keV has <u>decreased by a factor of 10</u>

Detector sensitivity improvement

- ¹⁴C measurement setup: started in 2022, with two background-control works scheduled in 2023.
 - 1) 1st (from ~0.207 Hz \rightarrow ~0.022 Hz):
 - Increasing shielding thickness
 - <u>Surface process on the copper closer to</u> <u>detector chamber</u>*
 - 2) 2^{nd} (from ~0.022 Hz \rightarrow ~0.012 Hz):
 - Surface process on all copper*

- \rightarrow The raw event rate above threshold 40 keV has **decreased by a factor of 10**
- → Detector sensitivity reaches <u>1 × 10⁻¹⁸ g/g</u> (90%
 C.L.) for 10 day running and 40 keV energy

threshold

data

• Stat. only and based on measured background

Calibration

Off-line Analysis

3) γ/β spectrum extraction

• PSD

• BiPo selection

4) Fitter

- Bkg. spectrum input from simulation
- Energy > 40 keV

- Adding other measurement results on bkg. contribution
- Fitting result:

 ^{14}C concentration of LAB samples screened so far range in ~(1-3) \times 10⁻¹⁷ g/g

- <10% stat. error</p>
- ~20% syst. error from energy scale and background model

Summary

 A small setup for fast screening of low ¹⁴C LS was built and operated at JUNO site

• Careful detector materials selection and low background control is essential for such a simple detector design

- A comprehensive background model is built to describe the data
- The setup satisfies the designed screening requirements

Check the radioassay of PMT ²³⁵U

Bkg. model	w/ PMT ²³⁵ U	w/o PMT ²³⁵ U
¹⁴ C Concentration (10 ⁻¹⁷ g/g)	0.59±0.43	2.14±0.19
²³⁵ U in PMTs (mBq)	6.45±2.06	

- PMT U235 has <u>high correlation</u> with ¹⁴C : ~0.8
- The constrain is based on PandaX measurement: (13 ± 9)mBq with error of ~65%
- → Adding extra buffer to eliminate uncertainty introduced by ²³⁵U from PMT

Buffer

- 1) Updated experiment setup
 - w/ water buffer
- 2) Hit efficiency of ²³⁵U in PMT will decrease by a factor of 10 in simulation
- Real data shows spectrums are consistent in high energy region for w/o buffer and w/ buffer data

Check the radioassay of PMT ²³⁵U

Bkg. model	w/ PMT ²³⁵ U	w/o PMT ²³⁵ U
¹⁴ C Concentration (10 ⁻¹⁷ g/g)	0.59±0.43	2.14±0.19
²³⁵ U in PMTs (mBq)	6.45±2.06	

- PMT U235 has <u>high correlation</u> with ¹⁴C : ~0.8
- The constrain is based on PandaX measurement: (13 ± 9)mBq with error of ~65%
- \rightarrow Adding extra buffer to eliminate uncertainty introduced by ²³⁵U from PMT

Buffer

- 1) Updated experiment setup
 - w/ water buffer

3) Real data shows spectrums are consistent in high energy region for w/o buffer and w/ — buffer data

New Constrain on PMT ²³⁵U

No significant change in real data with ~10cm buffer in front of PMT

• Update more stringent PMT ²³⁵U constraint

13.13±8.53 (direct measurement) \rightarrow 1.2±0.8 (scaled by ²³⁸U from PandaX measurement result)

Nylon film resistant ability

Measured by Yue Meng's Group

Accidental coincidence event

