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SuperCDMS experiment and Ge (and Si) HV detectors
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4 detector towers:
12 HV detectors: 8 Ge + 4 Si 
12 iZIP detectors: 10 Ge + 2 Si

● The SuperCDMS experiment is 
under installation at SNOLAB, Canada

● SuperCDMS uses two targets (Ge and Si) 
and two detector technologies: 

○ iZIP: phonon and charge readout 
with keV  scale threshold and 
ER/NR discrimination  

○ HV: phonon-only signal with low 
energy  threshold (can probe 
much lower-mass dark matter 
interactions) and little or no 
ER/NR discrimination
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Cosmogenic activation

● Cosmic-ray neutrons are the major 
contributors to tritium production in Ge 
and Si.

● Tritium (Beta-emitter, Q = 18.6 keV), 
produced in Ge and Si, is a big issue 
due to its presence in the detectors, its 
long half-life (half-life = 12.32 y), and.

● Tritium decays dominant backgrounds 
in  Ge HV detectors 
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CDMSLite Run3 spectrum

Agnese et al, Phy. Rev. D, 2019

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.062001


SuperCDMS efforts: Mitigating cosmogenic activation 
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SLAC maintained database used to record 
the entire history of detectors as well the 
(tower and housing) materials

Underground sites Description Depth 

Hades Storage
Area
Brussels,Belgium

Crystal  storage ~ 600 mwe

SUF Tunnel A Detector etching 
and polishing

15-20 mwe

SUF Tunnel C Detector storage 15-20 mwe

SLC South Adit 
Storage

Detector tower 
storage

50-60 mwe

MINOS facility, 
Fermilab

Storage of 
cryostat can 

copper sheets

~ 300 mwe

SNOLAB Experiment ~ 6000 mwe

GERDA/MAJORANA (GM)  container shipping crystals/detectors

                                                              Barabanov et al. NIM B, 2006
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● No transport of detector materials by flights
● Use of underground sites for various purposes including detector storage 
● Transport of detector/crystals in GERDA/MAJORANA container 

(a factor of 10 suppression of tritium production)
● Detailed tracking of exposure history of detector and Cu materials

~ 14.5 ton stainless cylinder 
(1.4 m (D) x 1.26 m (H)
~ 15 cm thick at the bottom

https://www.sciencedirect.com/science/article/pii/S0168583X06006793?casa_token=ja2i6uM2o34AAAAA:7yreiLhTZ0lvRHlh940khUwv6bVTW5ruucsZ1TUen1KY2LlHlQc_GfW5tyCbkqoehPCHRRVV


Exposure history of SuperCDMS Ge (Si) HV crystals/detectors
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Umicore,Belgi
um (Ge crystal    
manufacturing)

TopSiL, 
Denmark 

  (Si boule    
manufacturing)

 HADES 
underground storage, 
Belgium, ~ 600 mwe
  

 US (Norfolk, 
Virginia)
  

 SUF Tunnel A 
(Etching, polishing), 
15-20 mwe
SUF Tunnel C
(Long-term storage), 
15-20 mwe 
(~ years)
  

  SLAC and Stanford 
buildings
(Fabrication, Tower 
assembly and testing)
  

 SLC Adit 
Storage
(Long-term Tower 
storage), 50-60 
mwe

 SNOLAB 
(Experiment), 
~ 6000 mwe  

 Montana (Si crystal 
shaping)
(~1500 overground)

 Si crystal 
polishing, CA
(For Si detectors)  

● ~ 6-8 years of history
● Exposure target : 60 sea sea-level-equivalent days
● Detector towers went underground at SNOLAB on 5/2023 

(Shipment 1) and 11/2023 (Shipment 2)

In GM container (by sea)

In GM container 

Tower sh
ipping

Dark gray (box): 
Underground Sites
GM : GERDA/MAJORANA
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~ a month

~ days to months

(9-12) months

~year

~ days

~ days

~ 
da

ys

~ day 

~ days 

~  days 

~ day 

~ days 

● Crystals were manufactured in Europe and shipped to the US 
for detector fabrication. When not in use, they have been 
stored underground
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Tritium production in Ge (and Si) at sea-level 
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Activation Production
(atoms/kg/day), at 
sea-level

Reference

Tritium in Ge         74±9

       82±21

        94

CDMSLite, 2019 (Measurement)

EDELWEISS-III, 2017(Measurement)

TALYS (< 100 MeV) + INCL 
(A. Robinson, U.of Montreal)

Tritium in Si      112±24

       125

Richard et al. 2020
TALYS (< 100 MeV) + INCL
 (A. Robinson, U.of Montreal)

Gordon et al. IEEEE, 
2004

● Experiments can measure tritium 
decays, but measured production rate 
has also uncertainties.

● Gordon’s neutron spectrum (NYC, 
2003) and TALYS + INCL 
cross-section model, reproduce 
measured tritium production (within ~ 
25 %)

● No measurement exists for shallow 
depths. For shallow depths, we will 
obtain neutron flux and spectrum , 
and choose the TALYS + INCL model 
to estimate tritium production

https://ieeexplore.ieee.org/abstract/document/1369506?casa_token=8xfTSoT3e6oAAAAA:3o4Zsya8zGV80MwKZlmIUPJhHOrd6hVrOfayZRBSbv1axawaTAYqD6pmW-uDoQLBzbgAo6XV
https://ieeexplore.ieee.org/abstract/document/1369506?casa_token=8xfTSoT3e6oAAAAA:3o4Zsya8zGV80MwKZlmIUPJhHOrd6hVrOfayZRBSbv1axawaTAYqD6pmW-uDoQLBzbgAo6XV


Gordon’s scale factors

7

● > 10 MeV neutron flux (and tritium production)  
depends strongly on altitude.

● Since, the shape of the > 10 MeV neutron 
energy spectrum doesn’t change up to 
significant altitude,Gordon’s flux factor can be 
used as the tritium production scale factors for 
overground sites  

● Gordon’s scale factor :
neutron flux (> 10 MeV) at an altitude ⁄  neutron 
flux (> 10 MeV) at sea-level

Gordon et al. IEEEE, 2004
Tatsuhiko Sato. PlOS One, 2015
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● Good to consider also an alternative 
tool like EXPACs (that considers 
altitude, latitude, longitude, and solar 
cycle) to identify if  factors other than 
altitude matter for overground sites

● ~ 5 % difference in Gordon’s flux 
factor vs EXPACS’s for NYC, 2003.
 

https://ieeexplore.ieee.org/abstract/document/1369506?casa_token=8xfTSoT3e6oAAAAA:3o4Zsya8zGV80MwKZlmIUPJhHOrd6hVrOfayZRBSbv1axawaTAYqD6pmW-uDoQLBzbgAo6XV
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144679


Scale factors at SuperCDMS overground sites
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● Comparing EXPACS and 
Gordon in the same solar cycle 
(shown left) shows us that apart 
from altitude, location is a 
sub-dominant effect. We have 
thus adopted the Gordon 
parameterisation for these 
studies. 

● Comparing EXPACS data from 
2003 and 2020 to understand 
the impact of the solar cycle, we 
see a ~10% increase, indicating 
that the solar cycle is a 
non-trivial effect. We are working 
to incorporate this in future 
analysis  

LRT2024

* scaled numbers from both EXPACS and Gordon’s w.r.t to 
Gordon’s > 10 MeV neutron flux at NYC, 2003



Effective Gordon’s scale factor for land trips 
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● We use available (GPS/route) 
information on the road trips 
    : Extract altitude information
    : Obtain atmospheric depth

● A time-weighted effective 
production scale factor per trip can 
be used in tritium production 
calculation

● 1/10 suppression factor from the 
use of GERDA/MAJORANA 
container for some trips

Road trips Purpose Effective scale 
factor

Norfolk-SLAC Transport of 
detector/crystals 

1.73/10

SLAC-Montana 
(and back)

Slicing and Shaping of 
Si crystals

3.8/10 
(SLAC-Montana), 
3.0/10 
(Montana-SLAC)

SLAC to SNOLAB
(two shipments)

Transport of detector 
towers to SNOLAB

1.55
1.58LRT2024



Neutron production at shallow depths
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● Neutron spectrum and flux for the shallow-depth sites of 
interest require  simulations.

● Radiogenic neutrons – neutrons from U, Th SF and 
(alpha,n) – are irrelevant for tritium production in Ge (and 
Si).

● Cosmic-ray neutrons are sub-dominant at depths greater 
than 5 m.

● Only cosmogenic (muon-induced) neutrons  become 
relevant at depths > 5 m (~ 15 mwe).

● Various neutron production processes from muon-induced 
interactions 

i) Negative muon-capture 
ii) Direct muon spallation
iii) Hadronic showers and Electromagnetic showers

LRT2024
Obada Nairat et al. 2024, 
arXiV

Muon-capture neutrons
 from O-16

D.F. Measday Physics Reports,2001

https://arxiv.org/pdf/2409.10611
https://arxiv.org/pdf/2409.10611


Cosmic-ray muon generator and particle transport
● CRY as a cosmic-ray generator (muons 

generated in 100 m x 100 m plane above the 
modelled rock), muon energy and angular 
distribution considered

● Particle Transport code FLUKA used to 
propagate CRY’s muons and muon-induced 
secondaries through the modelled rock turning 
on all the relevant physics models for neutron 
production.

● We obtain the neutron flux and the energy 
spectrum at various shallow-depths from 
simulations to use them for calculating tritium 
production at relevant shallow-depth sites. 
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Hagmann et al. IEEE, 2007
Battistoni et al. Annals of N.E, 2015
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https://ieeexplore.ieee.org/abstract/document/4437209
https://www.sciencedirect.com/science/article/pii/S0306454914005878?casa_token=cTIpKqf8tYUAAAAA:tWOL3AJYMzThEZuoyINjvm0eWIkm1m3v3W0gCItJ9HZAk5iBIpsajSFBYRG8zOzZtZWXwDEo


Muon flux and neutron flux at shallow depths
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Chen et al. NIMA, 1993
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● Number of muons propagated: 1.74 billion
● Rock density = 2.7 g/cm^3

● Neutron flux measurements at SUF (Chen et al 1993) 
is reproduced well by our simulations

● (11.5-50) MeV neutron flux measured at SUF by Chen 
et al. (1993) was about (1.1 ± 0.4)E-6 n/cm2/s

● Our simulations in that energy range produces  
1.2 E-6 n/cm2/s

https://www.sciencedirect.com/science/article/abs/pii/016890029391103T


Tritium production in Ge and Si at shallow depths
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● TALYS (For < 100 MeV neutrons) + INCL (For 
>=100 MeV neutrons) reproduces overground 
measurements

● We use the same mix of models for 
shallow-depths and neutron spectrum obtained 
from the simulations to calculate tritium 
production in Ge and Si for SUF Tunnel A/C and 
SLC Adit storage

7 m (15 -20 mwe): SUF Tunnel A/C
20 m (50 -60 mwe) : SLC Adit Storage



Exposure history of SuperCDMS Ge (Si) HV crystals/detectors
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Umicore, 
Belgium 

  (Ge detector    
manufacturing)

TopSiL, 
Denmark 

  (Si crystal    
manufacturing)

 HADES 
underground 
storage, Belgium, ~ 
600 mwe
  

 US (Norfolk, 
Virginia)
  

 SUF Tunnel A 
(Etching, 
polishing), 
15-20 mwe
SUF Tunnel C
(Long term 
storage), 15-20 
mwe
  

  SLAC and Stanford 
Buildings  

 SLC Adit 
Storage
(Long term Tower 
storage), 50-60 
mwe

 SNOLAB 
(Experiment), 
~ 6000 mwe  

 Lattice Materials, Montana (Si 
crystal boule slicing and 
shaping)
(~1500 overground)

Tower shipping

Gray (box): Underground sites

*1/10000

~ 1.6

(3.8, 3.0)/10

1.3 (overground)
** ~1/1E9 (underground)

~1/1200 (Ge)+

~1/1100(Si)+

~1/3500 (Ge)+

~1/3400(Si)+

1/10 factor suppression when GERDA/MAJORANA container is in use
* approx. (scaled by measured neutron flux at 570 mwe(A. Malign 1982) to Gordon’s neutron flux)
** approx. (scaled by Mei-Hime’s > 10 MeV neutron flux (for SNOLAB) w.r.t to Gordon’s
+ From tritium suppression factors (based on calculated rates  in rock + 40 % enhancement from 
back-scatter neutrons) 

3.48

1/10

1.73/10



Summary and Conclusions
● SuperCDMS Tritium production calculated including overground/underground scale factors and 

known exposure at various locations. 
● Tritium production during long-term underground storage is small.  Overground exposure dominates.
● Preliminary estimate of the tritium activity in the HV detectors is about 30-40 sea-level-equivalent 

days well within targeted 60 days sea-level-equivalent exposure (full-scale systematic study still 
ongoing, including calculation for tritium production from stopping muons at shallow depths).

. 

● Need more study of muon-induced neutron production with modern particle transport codes and 
neutron flux measurements at shallow-depth sites. 15LRT2024

Detector Sea-level-equivalent days Specific activity 
(micro-Bq/kg)

Hypothetical unshielded 
Ge HV detector

~2400 days (if no mitigation) ~ 300

G145 (Ge HV detector) ~ 60 days (target) ~ 10

Production rate 

Time exposure 
at a place

Number of tritium atoms



Thanks!
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Back up
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SuperCDMS experiment

● ~ 6 kmwe depth underground at SNOLAB
●   Two iZIP towers and two HV towers
●   Base temperature : 15 mK
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Neutron flux as a function of depth



Shallow depth vs deep depth
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Esch, Ernst-Ingo. "Detector development for dark matter 
research." (2001).



GERDA/MAJORANA neutron spectrum and comparison
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EXPACs vs Gordon (comparison)
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Gordon’s data used 

Tool Neutron flux (n per sq. cm 
per sec) at NYC, 2003

Neutron flux (n per sq. cm 
per sec) at NYC, 2020

Gordon’s 
parameterization

3.50E-3 -

EXPACS 3.33E-3 3.95E-3 (10-15 % larger)



TALYS vs TALYS+INCL
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Back-scatter neutrons
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Mean neutron kinetic energy and % of the
> 10 MeV neutrons entering from the ceiling and floor
for modelled SUF Tunnel and PNNL SUL.



Neutron production
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● Chen at al. 1993: 
38 % contribution from muon- capture neutrons to the neutron flux in the range (11.5-50) 
MeV" and the rest from muon-induced showers at the depth of SUF (7 m, ~20 mwe)

● Our calculation:  ~20% to the total tritium production in Ge(Si) from (11.5-50) MeV neutrons
● An indication that the hadronic shower neutrons may already be dominating muon-capture 

neutrons in producing tritium in Ge/Si even at even very shallow depths. 
● More need of neutron production studies with modern tools (with improved hadronic 

models) necessary.


