Tritium Production in SuperCDMS

Sagar S. Poudel^{*}, Lekhraj Pandey, Rob Calkins, Ben Loer, Tina Cartaro, Spencer Keller, John Orrell (on behalf of the SuperCDMS Collaboration)

* South Dakota School of Mines & Technology

LRT2024

SuperCDMS experiment and Ge (and Si) HV detectors

- The SuperCDMS experiment is under installation at SNOLAB, Canada
- SuperCDMS uses two targets (Ge and Si) and two detector technologies:
 - iZIP: phonon and charge readout with keV scale threshold and ER/NR discrimination
 - HV: phonon-only signal with low energy threshold (can probe much lower-mass dark matter interactions) and little or no ER/NR discrimination

4 detector towers: 12 HV detectors: 8 Ge + 4 Si 12 iZIP detectors: 10 Ge + 2 Si

Cosmogenic activation

- Cosmic-ray neutrons are the major contributors to tritium production in Ge and Si.
- Tritium (Beta-emitter, Q = 18.6 keV), produced in Ge and Si, is a big issue due to its presence in the detectors, its long half-life (half-life = 12.32 y), and.
- Tritium decays dominant backgrounds in Ge HV detectors

CDMSLite Run3 spectrum

Agnese et al, Phy. Rev. D, 2019

SuperCDMS efforts: Mitigating cosmogenic activation

- No transport of detector materials by flights
- Use of underground sites for various purposes including detector storage
- Transport of detector/crystals in GERDA/MAJORANA container (a factor of 10 suppression of tritium production)
- Detailed tracking of exposure history of detector and Cu materials

Underground sites	Description	Depth
Hades Storage Area Brussels,Belgium	Crystal storage	~ 600 mwe
SUF Tunnel A	Detector etching and polishing	15-20 mwe
SUF Tunnel C	Detector storage	15-20 mwe
SLC South Adit Storage	Detector tower storage	50-60 mwe
MINOS facility, Fermilab	Storage of cryostat can copper sheets	~ 300 mwe
SNOLAB	Experiment	~ 6000 mwe

CDMS

LRT2024

eTraveler

~ 14.5 ton stainless cylinder (1.4 m (D) x 1.26 m (H) ~ 15 cm thick at the bottom

GERDA/MAJORANA (GM) container shipping crystals/detectors

Barabanov et al. NIM B, 2006

SLAC maintained database used to record the entire history of detectors as well the (tower and housing) materials

Exposure history of SuperCDMS Ge (Si) HV crystals/detectors

Tritium production in Ge (and Si) at sea-level

- Experiments can measure tritium decays, but measured production rate has also uncertainties.
- Gordon's neutron spectrum (NYC, 2003) and TALYS + INCL cross-section model, reproduce measured tritium production (within ~ 25 %)
- No measurement exists for shallow depths. For shallow depths, we will obtain neutron flux and spectrum, and choose the TALYS + INCL model to estimate tritium production

Activation	Production (atoms/kg/day), at sea-level	Reference
Tritium in Ge	74±9	CDMSLite, 2019 (Measurement)
	82±21	EDELWEISS-III, 2017(Measurement)
	94	TALYS (< 100 MeV) + INCL (A. Robinson, U.of Montreal)
Tritium in Si	112±24	Richard et al. 2020 TALYS (< 100 MeV) + INCL
	125	(A. Robinson, U.of Montreal)

Production rate from a given nuclear channel

$$P_{i,j} = n_i \int \frac{d\phi_j(E)}{\int dE} \sigma_{i,j}(E) dE$$
Particle flux cross-section

Gordon et al. IEEEE, 2004

number density of target isotopes

Gordon's scale factors

- > 10 MeV neutron flux (and tritium production) depends strongly on altitude.
- Since, the shape of the > 10 MeV neutron energy spectrum doesn't change up to significant altitude,Gordon's flux factor can be used as the tritium production scale factors for overground sites
- Gordon's scale factor : neutron flux (> 10 MeV) at an altitude / neutron flux (> 10 MeV) at sea-level

<u>Gordon et al. IEEEE, 2004</u> Tatsuhiko Sato. PIOS One, 2015

- Good to consider also an alternative tool like EXPACs (that considers altitude, latitude, longitude, and solar cycle) to identify if factors other than altitude matter for overground sites
- ~ 5 % difference in Gordon's flux factor vs EXPACS's for NYC, 2003.

Scale factors at SuperCDMS overground sites

- Comparing EXPACS and Gordon in the same solar cycle (shown left) shows us that apart from altitude, location is a sub-dominant effect. We have thus adopted the Gordon parameterisation for these studies.
- Comparing EXPACS data from 2003 and 2020 to understand the impact of the solar cycle, we see a ~10% increase, indicating that the solar cycle is a non-trivial effect. We are working to incorporate this in future analysis

Effective Gordon's scale factor for land trips

- We use available (GPS/route) information on the road trips
 - : Extract altitude information
 - : Obtain atmospheric depth
- A time-weighted effective production scale factor per trip can be used in tritium production calculation
- 1/10 suppression factor from the use of GERDA/MAJORANA container for some trips

Si crystals

Transport of detector

towers to SNOLAB

(and back)

SLAC to SNOLAB

(two shipments)

(SLAC-Montana),

(Montana-SLAC)

3.0/10

1.55

1.58

Neutron production at shallow depths

- Neutron spectrum and flux for the shallow-depth sites of interest require simulations.
- Radiogenic neutrons neutrons from U, Th SF and (alpha,n) – are irrelevant for tritium production in Ge (and Si).
- Cosmic-ray neutrons are sub-dominant at depths greater than 5 m.
- Only cosmogenic (muon-induced) neutrons become relevant at depths > 5 m (~ 15 mwe).
- Various neutron production processes from muon-induced interactions
 - i) Negative muon-capture
 - ii) Direct muon spallation
 - iii) Hadronic showers and Electromagnetic showers

LRT2024

Cosmic-ray muon generator and particle transport

- CRY as a cosmic-ray generator (muons generated in 100 m x 100 m plane above the modelled rock), muon energy and angular distribution considered
- Particle Transport code FLUKA used to propagate CRY's muons and muon-induced secondaries through the modelled rock turning on all the relevant physics models for neutron production.
- We obtain the neutron flux and the energy spectrum at various shallow-depths from simulations to use them for calculating tritium production at relevant shallow-depth sites.

Hagmann et al. IEEE, 2007 Battistoni et al. Annals of N.E, 2015

Muon flux and neutron flux at shallow depths

Number of muons propagated: 1.74 billion

Rock density = 2.7 g/cm^3

Elements	Mass fraction (in %)
Oxygen (O)	46.10
Silicon (S)	28.20
Aluminium (Al)	8.23
Iron (Fe)	5.63
Calcium (Ca)	4.15
Sodium (Na)	2.36
Magnesium (Mg)	2.33
Potassium (K)	2.09

Depth (m)	Description	$\frac{Muon}{(/cm^2/s)}$	> 10 MeV neutron flux $(/cm^2/s)$
0	sea-level	1.15×10^{-2}	3.50×10^{-3}
5	muon-induced > 10 MeV neutrons start dominating	5.10×10^{-3}	3.9×10^{-6}
7	SUF Tunnels A and C (15-20) mwe	3.80×10^{-3}	3.0×10^{-6}
20	SLC Adit Storage (50-60) mwe	9.94×10^{-4}	1.0×10^{-6}

- Neutron flux measurements at SUF (Chen et al 1993) is reproduced well by our simulations
- (11.5-50) MeV neutron flux measured at SUF by Chen et al. (1993) was about (1.1 ± 0.4) E-6 n/cm²/s
- Our simulations in that energy range produces $1.2 E-6 n/cm^2/s$

Chen et al. NIMA, 1993

Tritium production in Ge and Si at shallow depth

- TALYS (For < 100 MeV neutrons) + INCL (For >=100 MeV neutrons) reproduces overground measurements
- We use the same mix of models for shallow-depths and neutron spectrum obtained from the simulations to calculate tritium production in Ge and Si for SUF Tunnel A/C and SLC Adit storage

7 m (15 -20 mwe): SUF Tunnel A/C 20 m (50 -60 mwe) : SLC Adit Storage

Depth	Tritium production	Tritium production
(m)	in Ge $(/kg/day)$	in Si(/kg/day)
0	94	125
5	6.7×10^{-2}	$9.5 imes10^{-2}$
7	5.7×10^{-2}	$7.8 imes 10^{-2}$
20	1.9×10^{-2}	$2.6 imes10^{-2}$

Exposure history of SuperCDMS Ge (Si) HV crystals/detectors

Summary and Conclusions

Sea-level-equivalent days

~2400 days (if no mitigation)

 ~ 60 days (target)

Detector

Hypothetical unshielded

G145 (Ge HV detector)

Ge HV detector

- SuperCDMS Tritium production calculated including overground/underground scale factors and known exposure at various locations.
- Tritium production during long-term underground storage is small. Overground exposure dominates.
- Preliminary estimate of the tritium activity in the HV detectors is about 30-40 sea-level-equivalent days well within targeted 60 days sea-level-equivalent exposure (full-scale systematic study still ongoing, including calculation for tritium production from stopping muons at shallow depths).

Specific activity (micro-Bq/kg)

~ 300

~ 10

Time exposure at a place

	2	× _
$N(t_{\mathrm{exp}}) = au A_0$	$1 - e^{2}$	$\frac{-t_{exp}}{\tau}$
	L	1

Production rate

Number of tritium atoms

Need more study of muon-induced neutron production with modern particle transport codes and neutron flux measurements at shallow-depth sites. I RT2024

Thanks!

Back up

SuperCDMS experiment

- ~ 6 kmwe depth underground at SNOLAB
- Two iZIP towers and two HV towers
- Base temperature : 15 mK

Neutron flux as a function of depth

Omnidirectional muons and cosmic-ray neutrons (given by EXPACs) from overground incident vertically and propagated through rock (2.7 g/cm^3)

Shallow depth vs deep depth

Shallow depths	Deep depths
Constant ratio of Vertical muon intensity/Total muon flux , earth curvature is not important	Ratio of Vertical muon intensity/Total muon intensity increases with depth
Muon energy losses in rock is primarily by ionization	Muon energy losses through hadronic showers compete with ionization losses.
Several competing neutron-production processes	Hadronic showers dominate muon-induced neutron production

Esch, Ernst-Ingo. "Detector development for dark matter research." (2001).

GERDA/MAJORANA neutron spectrum and comparison

EXPACs vs Gordon (comparison)

ΤοοΙ	Neutron flux (n per sq. cm per sec) at NYC, 2003	Neutron flux (n per sq. cm per sec) at NYC, 2020
Gordon's parameterization	3.50E-3	-
EXPACS	3.33E-3	3.95E-3 (10-15 % larger)

TALYS vs TALYS+INCL

FIG. 8: Tritium production cross-sections as a function of neutron kinetic energy in Germanium. Only neutron-induced nuclear reactions on most abundant Ge isotopes (⁷⁰Ge: 20.4%, ⁷²Ge: 27.3%, ⁷³Ge:7.8%, ⁷⁴Ge: 36.7 %, ⁷⁶Ge: 7.8%) are included.

FIG. 9: Tritium production cross-sections as a function of neutron kinetic energy in Si. Only neutron-induced nuclear reactions on most abundant Si isotopes (28 Si: 92.2%, 29 Si: 4.7%, 30 Si:3.1%) are included.

Back-scatter neutrons

Location	Ceiling	Floor
SUF Tunnel	122 MeV	64 MeV, $20~%$
PNNL SUL	$128 { m MeV}$	58 MeV, $13~%$

Mean neutron kinetic energy and % of the > 10 MeV neutrons entering from the ceiling and floor for modelled SUF Tunnel and PNNL SUL.

Neutron production

• Chen at al. 1993:

38 % contribution from muon- capture neutrons to the neutron flux in the range (11.5-50) MeV" and the rest from muon-induced showers at the depth of SUF (7 m, ~20 mwe)

- Our calculation: ~20% to the total tritium production in Ge(Si) from (11.5-50) MeV neutrons
- An indication that the hadronic shower neutrons may already be dominating muon-capture neutrons in producing tritium in Ge/Si even at even very shallow depths.
- More need of neutron production studies with modern tools (with improved hadronic models) necessary.