Backgrounds of the CUPID experiment

Pía Loaiza, on behalf of the CUPID collaboration

IJCLab, CNRS, Université Paris Saclay

Low Radioactivity Techniques 2024, Krakow

October 2024

CUPID

CUORE Upgrade with Particle IDentification

Next generation $0\nu\beta\beta$ bolometric ton-scale experiment in CUORE infrastructure

Discovery sensitivity: $T_{1/2}(^{100}Mo) > 10^{27}$ y $m_{etaeta} < 20$ meV

CUORE ¹³⁰Te Bolometers Heat

CUPID ¹⁰⁰Mo Scintillating bolometers Heat and Light

From CUORE to CUPID

- $Q_{\beta\beta}$ (¹⁰⁰ Mo) = 3034 keV, above γ background from natural radioactivity
- Heat and light detection allows α rejection

The CUPID detectors

- Li₂¹⁰⁰MoO₄ scintillating crystals,
- 1596 crystals, 45 × 45 × 45 mm³
- $\bullet~{\rm Enrichment}>95\%\to240$ kg $^{100}{\rm Mo}$
- 1710 Ge light detectors, with Neganov-Trofimov-Luke amplification
- **Objective:** Energy resolution 5 keV FWHM at 3034 keV

CUPID prototype tower

4/15

- Radioactivity from crystals
- 2 Radioactivity from holders
- 8 Radioactivity from cryostat shields and infrastructure
- 4 Muons
- Seutrons
- $2\nu\beta\beta$ pileup

Simulations and Selection cuts

1- GEANT4 based Monte Carlo

2- Detector response: energy resolution, light yield, NTL on light and ionization

Selection cuts:

- Light yield selection: remove Thori α particles
- Delayed coincidences cut: remove events from ²¹⁴Bi and ²⁰⁸Tl decays
- Select events with energy deposit in only one crystal

ROI: (3034 \pm 15) keV

• Activities from background models of previous experiments.

Probability density functions Cupid-Mo/CUORE \rightarrow Background Index using the number of events in ROI

• To take into account correlations, we sample the full posterior distribution for each step in the Markov Chain.

Li¹⁰⁰MoO₄ crystals contamination

From CUPID-Mo (EPJC 83, 675 (2023))

 $\begin{array}{lll} ^{226} \mbox{Ra to} \ ^{210} \mbox{Pb} & ^{228} \mbox{Th to} \ ^{208} \mbox{Pb} \\ <0.2 \ \mu \mbox{Bq/kg} & 0.4 \pm 0.2 \ \mu \mbox{Bq/kg} \\ 2.0 \pm 0.5 \ n \mbox{Bq/cm}^2 & <2.5 \ n \mbox{Bq/cm}^2 \end{array}$

+ ²¹⁰Pb, ⁴⁰K, ⁹⁰Sr+⁹⁰Y (Q_{β} < Q_{$\beta\beta$} (¹⁰⁰ Mo))

Background from Li2¹⁰⁰MoO₄ crystals

$^{226}Ra/^{228}Th$

- Bulk \rightarrow 1.5±0.7 · 10⁻⁶ cts/(keV·kg·y)
- Surface \rightarrow 9.0±4 \cdot 10⁻⁶ cts/(keV·kg·y)

Cosmogenics: 90 days at sea level and 1 y cooling-down (ACTIVIA). 42 K, 82 Rb, 88 Y, 56 Co $\rightarrow 2.3 \cdot 10^{-6}$ cts/(keV·kg·y)

Close components

- Probability density functions for activity from CUORE background model. (arXiv:2405.17937 (2024),
 - S. Ghislandi poster@LRT).

1			X
The second		7	
\searrow	3 1 69 2		

NOSV copper + PTFE spacers + readout wires

²²⁶ Ra	²²⁸ Th
$<$ 0.5 μ Bq/kg	$<$ 0.4 μ Bq/kg
8.4 ± 0.7 nBq/cm ²	$11.5\pm0.5~\mathrm{nBq/cm^2}$

Mainly from Ra/Th on surfaces

- Bulk: $< 1.0 \cdot 10^{-6} \text{ cts/(keV \cdot kg \cdot y)}$
- Surface:

 $4.6\pm0.4\cdot10^{-5}$ cts/(keV·kg·y)

```
Total: 4.7±0.8 · 10<sup>-5</sup>
cts/(keV·kg·y)
```


Can be reduced by improvements on surface contaminations by

- cleaner machining practices with laser cutting
- extreme controlled storage and construction conditions

Background from cryostat shields

- Activities from CUORE background model. arXiv:2405.17937 (2024).
- Primary contribution: ²²⁶Ra and ²²⁸Th on surfaces of 10 mK shield.
- Other cryostat shields: Background from ²²⁶Ra and ²²⁸Th in bulk.
- Total cryostat: $1.2\pm0.3 \cdot 10^{-5}$ cts/(keV·kg·y)

$2\nu\beta\beta$ pile-up

• Two $2\nu\beta\beta$ events close enough in time that are not resolved, but reconstructed as a single event \rightarrow background at 3 MeV

- Parameters that determine the ability to identify pile-up events: rise time and signal-to-noise ratio
- CUPID baseline: Light Detector instrumented with Neganov-Trofimov-Luke, NTL, amplification

• R&D results of NTL performances combined with a phenomenological law used for background estimate $\rightarrow 3 \cdot 10^{-5} \text{ cts/(keV·kg·y)}$

Predictions based on results from precursor experiments, CUORE and CUPID-Mo, and on improved new design.

Room for background reduction on close components by improvements on surface contaminations

Summary

 CUPID background from simulations, based on precursor experiments and light detector performances: 1.0 · 10⁻⁴ cts/(keV·kg·y). Reaches the background goal of the project →

- Allows exclusion sensitivity at 90% C.L with 10 years livetime:
 - $T_{1/2}^{0\nu} > 1.4 \cdot 10^{27} \mathrm{yrs}$
 - $m_{\beta\beta}^{\prime} < 10 17 \text{ meV}$

• $Li_2^{100}MoO_4$ crystals pre-production on going

Extra slides

Some radioactivity measurements

$\frac{238 \text{U} \quad 232 \text{Th}}{238 \text{U} \quad 232 \text{Th}}$ $\frac{238 \text{U} \quad 232 \text{Th}}{232 \text{Th}}$

1 Martin	CuPEN : HPGe (Measured with full copper layer)		
		²²⁶ Ra	²²⁸ Th
	bulk [μ Bq/kg]	< 1000	< 800
	surface [nBq/cm ²]	< 11	< 9
	(assigning all contamination on surface)		

• Sensitivity of planned HPGe copper measurement (slabs 1mm thick): ²²⁶Ra<12 nBq/cm²; ²²⁸Th <20 nBq/cm²

Muons

- Additional muon veto. Construction on-going
- From simulations, muon rejection efficiency \sim 98 % \rightarrow $1.3 \cdot 10^{-6} \text{ cts}/(\text{keV}\cdot\text{kg}\cdot\text{y})$

Neutrons

- Neutron shielding to be expanded to mitigate (n,γ) reactions in Mo and Cu
- With additional 10 cm of polyethylene on the top and at sides, neutron backgrounds suppressed to ~2 · 10⁻⁶ cts/(keV·kg·y)

