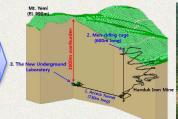


Ultra-purification and massproduction of NaI powder for **COSINE-200**

Olga Gileva* and KeonAh Shin



COSINE experiment overview


The COSINE experiment is searching for dark matter using ultra-low background NaI(TI) scintillating crystals to verify the DAMA/LIBRA's claim via the same target material.

COSINE-100 2016 – 2023

COSINE-100Upgrade COSINE-200

Astropart. Phys. 141, 102709 (2022) 2

Towards COSINE-200

01.

<u>Nal powder purification</u> – In-house technology required

- The Nal powder for COSINE-100 crystal was selected by the producer, Alpha-Spectra Inc. company.
- The crystal was found to have three times higher intrinsic contamination than the DAMA/LIBRA crystal.
- The main background sources are internal ²¹⁰Pb, ⁴⁰K, and cosmogenic ³H.

Eur. Phys. J. C (2021) 81:837

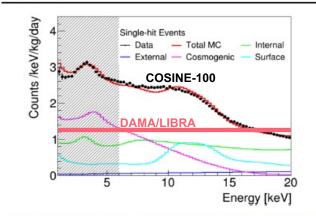


Fig. 9 [The low-energy spectra of single-hit events averaged for the five crystals. The measured energy spectrum after efficiency corrections [23] is compared with the total of the simulations. The range of 1–6 keV in the MC spectrum is extrapolated from the modeling

Towards COSINE-200

02.

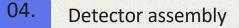
Crystal growing – In-house technology required

- 106 kg COSINE-100 crystal was produced by Alpha-Spectra Inc. company.
- A small crystal grower was used for proof of principle.
- The growing technology using full-size crystal grower is under development

Kyropolous growers with quartz crucible

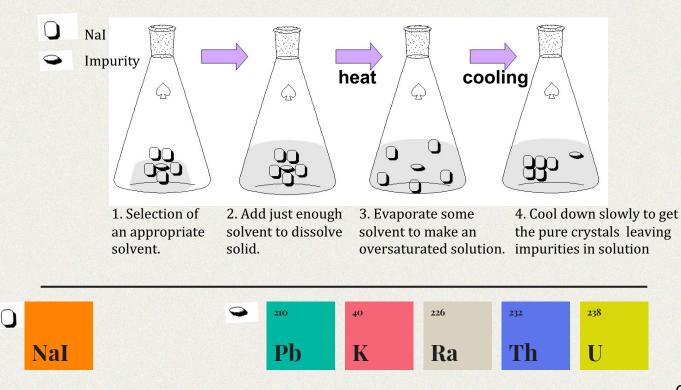
Towards COSINE-200

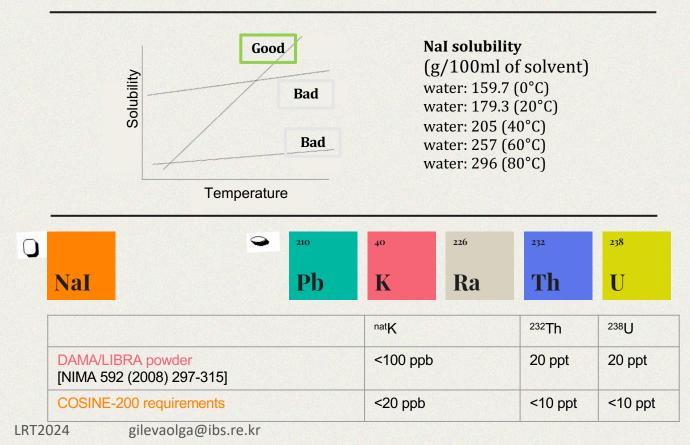
03.


Crystal machining and polishing – In-house technology required

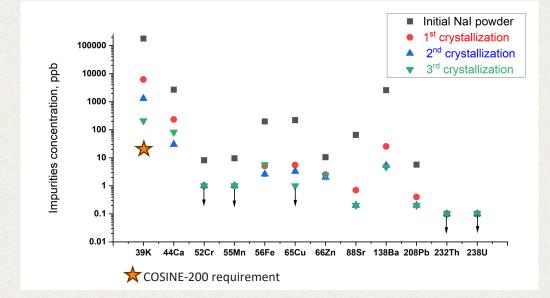
- 106 kg COSINE-100 crystal was produced and encapsulated by Alpha-Spectra Inc. company.
- 40% increased light yield was achieved with the COSINE-100U setup

NIMA 981 (2020) 164556





Astropart. Phys. 141, 102709 (2022)


Purification via fractional recrystallization

Purification via recrystallization from aqueous solutions

Lab scale _ Technical grade powder

Decontamination factor

J. Rad. Nucl. Chem. 317, 1329 (2018)

Material	³⁹ K	⁴⁴ Ca	⁵² Cr	⁵⁵ Mn	⁵⁶ Fe	⁶⁵ Cu	⁶⁶ Zn	⁸⁸ Sr	¹³⁸ Ba	²⁰⁸ Pb
1st crystallization cycle	28.7	11.5	> 8.2	> 9.6	38.7	40.3	4.0	93.9	101.6	14.3
2nd crystallization cycle	137.9	> 90	> 8.2	> 9.6	76.0	67.2	5.3	328.5	489.0	28.5
3rd crystallization cycle	857.1	33.0	> 8.2	> 9.6	34.6	> 221.6	4.4	328.5	551.4	28.5

Lab scale _ Astro & Crystal grades

Material	Astro grad	de, 99.999 + %	Crystal grade, 99.99(5) %			
Unit	Initial ppb	Purified	Initial	Purified		
³⁹ K	4.5	< 1	45.1	♦ 6.0		
⁴⁴ Ca	16.0	< 20	94.6	30.4		
⁵² Cr	19	< 1	23.7	< 1		
⁵⁵ Mn	1.7	< 1	< 1	< 1		
⁵⁶ Fe	110.1	< 3	34.6	3.9		
⁶⁵ Cu	1.7	< 1	11.5	< 1		
⁶⁶ Zn	3.8	< 3	9.1	< 3		
⁸⁸ Sr	0.3	< 0.3	0.9	< 0.3		
¹³⁸ Ba	0.6	< 0.3	7.1	0.6		
²⁰⁸ Pb	0.9	0.4	3.3	♦ 0.8		
²³² Th	< 0.1	< 0.1	< 0.1	< 0.1		
²³⁸ U	< 0.1	< 0.1	< 0.1	< 0.1		

- Astro-grade powder satisfies the COSINE-200 requirements on purity but goes out of budget.
- Crystal-grade powder requires just one cycle of recrystallization to reach the purity of Astrograde powder.
- <20 ppb of K in purified powder is achievable.
- Pb reduction is still noticeable at ppb and ppt level.

J. Rad. Nucl. Chem. 317, 1329 (2018)

Crystal grade + single crystallization = Astro grade

LRT2024 gilevaolga@ibs.re.kr

Mass production facility

In-house designed and Commissioned in 2019 at CUP

Mass production facility

fphy.(2023) 1142849

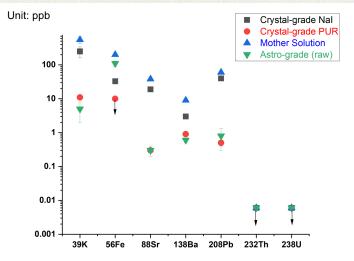
Receiver tank 1, 2

Conical dryer

Controller

LRT2024

Mass production facility

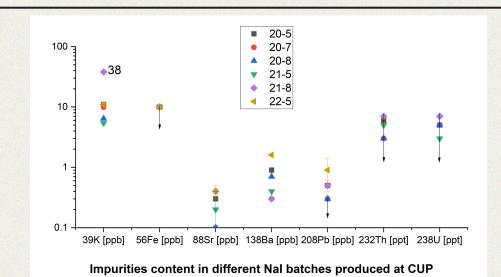

fphy.(2023) 1142849

Preparing of oversaturated solution at 100 °C Recrystallized crystals and mother solution Filtering out and washing the crystals

Dry the crystals in the conical dryer

Purification of Crystal-grade Nal (CG-Nal)

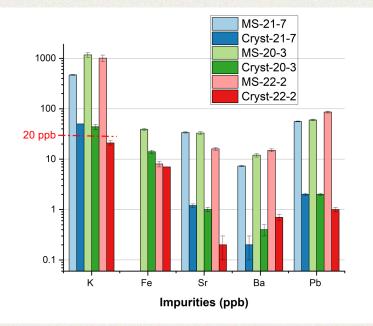
Impurities content in purified (PUR) and raw Nal materials


Proof of principle confirmation in massscale production:

- The purity of Astro-grade (AG-Nal) powder was achieved with single recrystallization of the Crystal-grade (CG-Nal) Nal.
- The Mother Solution (MS) remaining after CG-Nal recrystallization is similar to the purity of the raw CG-Nal. The MS could be recycled.
- Th and U in all powders were below 6 ppt.

13

	HPGe meas. Crystal-grade PUR, mBq/kg						
	²²⁶ Ra(²³⁸ U) ⁴⁰ K ²²⁸ Ac ²²⁸ Th						
< 0.56 < 4.04 < 0.96 < 0.85							


Purification of Crystal-grade Nal (CG-Nal)

We keep the balance between the crystallization rate (<50%) and purity (<20 ppb K)

Overall range of impurities	K	Fe	Sr	Ba	Pb	Th	U
	[ppb]	[ppb]	[ppb]	[ppb]	[ppb]	[ppt]	[ppt]
within 35-44% crystallization rate	5.1 / 12	<7 / <10	0.1 / 0.5	0.2 / 1.8	<0.3 / 1.4	<3 / <10	<3 / <10

Mother Solution (MS) recycling

Reduction of impurities in MS. Different experimental runs.

35% Crystallization rate

To reach purity level of ^{nat}K < 20 ppb

Maximum 1 ppm K in MS is allowed

To reach the purity in one crystallization cycle

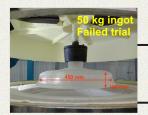
²³²Th and ²³⁸U

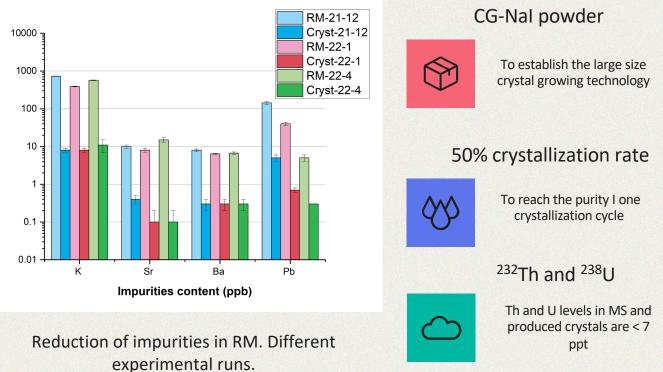
Th and U levels in MS and produced crystals are < 7 ppt

Water content measurement

- Karl-Fisher Titration, ppm to % level of moisture in the powder
- The required level for successive crystal growing is < 0.1%
- Excessive moisture in the powder may cause damage to the quartz crucible and adversely affect the crystal growth

Crystals grown at CUP


	Powder used	^{nat} K [ppb]	²¹⁰ Ρb [μBq/kg]	²³² Th (216Po) [µBq/kg]	²³⁸ U average [µBq/kg]	Comment
Nal-025	AG-Nal	684 ± 100	3.8±0.3	< 6	26 ± 7	Refractories were replaced
Nal-034	AG-Nal	< 62	0.05 ± 0.09	35 ± 5	51 ± 7	
Nal-035	AG-Nal	< 42	0.01 ± 0.02	7 ± 2	11 ± 4	Best purity was observed
Nal-036	AG-Nal	< 53	0.42 ± 0.27	< 20	451 ± 48	Contamination in the growing process
Nal-037	PUR-Nal	8.3 ± 4.6	0.38 ± 0.10	< 3.3	< 25	


Fig. 3 Four NaI(TI) crystal ingots produced by the small grower : a NaI-025, b NaI-034, c NaI-035, and d NaI-036

Nal-037 crystal. (A) Crystal ingot and (B) polished crystal

Residual Melt (RM) recycling

Reported purity for recently grown NaI(TI) crystals

Unit: µBq/kg

	COSINE #NaI-035 [1]	COSINE #NaI-037 [2]	COSINE-100 #6 [1]	DAMA [3]	SABRE #33 [4]	PICOLON #85 [5]	ANAIS-112 [6]
Ingot mass, kg	0.6	0.7	12.5	9.7	3.4	1.3	112.5
Nal powder / growing facility	AG-Nal / CUP	CG-PUR / CUP	Alpha Spectra comp.	Saint Gobain comp.	AG-Nal / RMD comp	In-house tech.	Alpha Spectra comp
⁴⁰ K	< 1300	260 ± 140	520 ± 80	<620	150 ± 20	<600	700 – 1330
²¹⁰ Pb	10 ± 20	380 ± 100	1870 ± 90	10 - 30	461 ± 5	<5.7	700 – 3150
²³² Th	7 ± 2	< 3	2.5 ± 0.8	2 - 31	1.6 ± 0.3	0.3 ± 0.5	0.4 - 4.0
²³⁸ U	11 ± 4	< 24.4	< 0.25	8.7 - 124	6.0 ± 0.6	1.0 ± 0.4	3 - 10

[1] Eur.Phys.J.C. (2020) 80:814; [2] 10.3389/fphy.2023.1142765; [3] NIMA 592 (2008) 297-315; [4] Eur. Phys. J. C. (2022) 82:12; [5] Present status of PICOLON project. ~ Purity of Nal(TI) and background ~ . Kenta Kotera. Tokushima University. @ DMNet. 2024; [6] Eur. Phys. J. C 79, 412 (2019).

Summary

- Methods of NaI purification and recycling were developed and performed at CUP.
- Mass-scale purification facility was established and commissioned at CUP. The maximum production capacity is 70 kg of powder in two weeks.
- The purification facility supports the crystal growing trials via developing and performing the successive recycling technology for the residual melt.
- 400 kg of pure Nal powder had been produced at CUP.
- Further development of the purification of TII could be introduced if needed.

Thank you for your attention!

20