Updated background studies for the ANAIS dark matter experiment

- ANAIS-112: goal, set-up, performance, results
- Background studies: first model, updates
- ANAIS+: prospects

Low Radioactivity Techniques (LRT2024)

1–4 Oct 2024 Kraków, Polan

Susana Cebrián scebrian@unizar.es

J. Amaré, J. Apilluelo, D. Cintas, I. Coarasa, E. García, S. Hollick, M. Martínez, Y. Ortigoza, A. Ortiz de Solórzano, T. Pardo, J. Puimedón, M. L. Sarsa

Goal: Dark Matter annual modulation

Interaction rate of WIMPs

$$S_k(t) = S_{0,k} + S_{m,k} \cos \omega (t - t_0)$$

k: energy bin

- ✓ 1 year period (for SHM)
- ✓ Maximum around June 2nd
- ✓ Weak effect (1-10%)
- ✓ Only noticeable at low energy

Observed annual modulation signal by **DAMA/LIBRA experiment** (at LNGS, Italy) over 22 y compatible with DM (2.86 t x y) at 13.7σ CL

Goal: Dark Matter annual modulation

ANAIS: goal and set-up

ANAIS (<u>Annual modulation with NAI Scintillators</u>) To confirm or refute DAMA/LIBRA result using the same technique at a different location (**Canfranc Underground Laboratory**)

ANAIS-112: 9 detectors, 112.5 kg NaI(TI)

ANAIS-112: performance

- 9 ultrapure NaI(TI) crystals from Alpha Spectra Company

Detector	Quality powder	Received at Canfranc in
D0, D1	<90 ppb K	December 2012
D2	WIMPScint-II	March 2015
D3	WIMPScint-III	March 2016
D4, D5	WIMPScint-III	November 2016
D6, D7, D8	WIMPScint-III	March 2017

Cylindrical modules coupled to 2 PMTs (Hamamatsu R12669SEL2) with high QE (~40%)

- Mylar window in copper vessel for external calibration

J. Amaré et al, Eur. Phys. J. C 79 (2019) 228

Data taking ongoing since August 2017,
with ~95% live time

Excellent light collection and energy threshold in all modules: ~15 phe/keV, 1 keV_{ee}

 New electronics running in parallel to improve noise rejection

ANAIS-112: quenching factor determination

Relative efficiency factor for nuclear recoil scintillation $E_{ee} = Q E_{nr}$

Large dispersion between the many available measurements of Q for different **Nal detectors**

$$Q_{Na}^{DAMA} = 30 \%$$

 $Q_{I}^{DAMA} = 9 \%$

Q determination for ANAIS-112 crystals ongoing following two approaches

In a scintillator, an **ER** produces much more light than a **NR** of the same energy!

- 1) Comparing neutron calibration data with ²⁵²Cf source with MC simulation, assuming a certain Q
 - Constant Q_{DAMA} not compatible with ANAIS data
 - Energy-dependent Q (at least for Na) favoured

T. Pardo et al., PoS(TAUP2023)078

ANAIS-112: quenching factor determination

2) Measurements at TUNL (Duke University, US) in collaboration with COSINE using a **neutron beam**

Five small crystals from ANAIS supplier with different powder quality

- Noticeable differences for different energy calibrations (Nal non-linearity)
- Lower Q than DAMA/LIBRA measurement

D. Cintas et al, Phys. Rev. C 110 (2024) 014613

ANAIS-112: annual modulation results

- Published annual modulation analysis of 3 y data

· Least square fit of the counting rate

$$\chi^{2} = \sum_{i} \frac{(n_{i} - \mu_{i})^{2}}{\sigma_{i}^{2}} \qquad \mu_{i,d} = \left[R_{0,d} \left(1 + f_{d} \phi_{bkg,d}^{MC}(t_{i}) \right) + S_{m} \cos(\omega(t_{i} - t_{0})) \right] M_{d} \Delta E \Delta t$$

detector d, time bin i

- Null hypothesis well supported
- Best fits for amplitude incompatible with DAMA/LIBRA at 3.3 (2.7)σ for 1-6 (2-6) keV_{ee}

 S_m = (-0.0034 ± 0.0042) cpd/kg/keV (1-6 keV) S_m = (0.0003 ± 0.0037) cpd/kg/keV (2-6 keV)

```
Phys. Rev. D 103 (2021) 102005
```


- Reanalysis of 3 y data after applying machine learning techniques to improve sensitivity: region of interest dominated by non-bulk scintillation events

I. Coarasa et al, JCAP11(2022)048; arXiv:2404.17348, accepted in Comm. Phys.

- Analysis of 6 y data preliminary results

Updated background studies for the ANAIS dark matter experiment

- ANAIS-112: goal, set-up, performance, results
- Background studies: first model, updates
- ANAIS+: prospects

Low Radioactivity Techniques (LRT2024)

1–4 Oct 2024 Kraków, Polan

Susana Cebrián scebrian@unizar.es

J. Amaré, J. Apilluelo, D. Cintas, I. Coarasa, E. García, S. Hollick, M. Martínez, Y. Ortigoza, A. Ortiz de Solórzano, T. Pardo, J. Puimedón, M. L. Sarsa

First background model: inputs

Detailed **background model** for each detector of **ANAIS-112**, based on Geant4 Monte Carlo **simulations** and accurate quantification of **background sources**

J. Amaré et al, Eur. Phys. J. C 76 (2016) 429, Eur. Phys. J. C 79 (2019) 412

Activity from external components measured with HPGe detectors at Canfranc

Component	Unit	$^{40}\mathrm{K}$	²³² Th	²³⁸ U	226 Ra	Others
PMTs (R12669SEL2)	$\mathrm{mBq/PMT}$	97 ± 19	20 ± 2	128 ± 38	84 ± 3	
		133 ± 13	20 ± 2	150 ± 34	88 ± 3	
		108 ± 29	21 ± 3	161 ± 58	79 ± 56	
		95 ± 24	22 ± 2	145 ± 29	88 ± 4	
		136 ± 26	18 ± 2	187 ± 58	59 ± 3	
		155 ± 36	20 ± 3	144 ± 33	89 ± 5	
mean activity all units	$\mathrm{mBq/PMT}$	111 ± 5	20.7 ± 0.5	157 ± 8	82.5 ± 0.8	
Copper encapsulation	$\mathrm{mBq/kg}$	<4.9	<1.8	$<\!\!62$	< 0.9	60 Co: <0.4
Quartz windows	$\mathrm{mBq/kg}$	< 12	$<\!2.2$	< 100	<1.9	
Silicone pads	$\mathrm{mBq/kg}$	<181	$<\!\!34$		51 ± 7	
Archaelogical lead	mBq/kg		$<\!0.3$	< 0.2		210 Pb: <20
Inner volume air	$\mathrm{Bq/m^{3}}$					²²² Rn: 0.6

Upper limits at 95% C.L.

First background model: inputs

Detailed **background model** for each detector of **ANAIS-112**, based on Geant4 Monte Carlo **simulations** and accurate quantification of **background sources**

J. Amaré et al, Eur. Phys. J. C 76 (2016) 429, Eur. Phys. J. C 79 (2019) 412

- Internal activity directly assessed: mainly ⁴⁰K, ²¹⁰Pb

Detector	$^{40}\mathrm{K}$	232 Th	$^{238}\mathrm{U}$	$^{210}\mathrm{Pb}$	⁴⁰ K: by identifying coincidences
	(mBq/kg)	(mBq/kg)	(mBq/kg)	(mBq/kg)	C. Cuesta et al., Int. J. Mod. Phys. A.
D0	$1.33 {\pm} 0.04$	$(4\pm 1) \ 10^{-3}$	$(10\pm 2) \ 10^{-3}$	3.15 ± 0.10	29 (2014) 1443010
D1	1.21 ± 0.04			3.15 ± 0.10	
D2	1.07 ± 0.03	$(0.7\pm0.1)\ 10^{-3}$	$(2.7\pm0.2)\ 10^{-3}$	0.7 ± 0.1	1460.9 keV
D3	$0.70 {\pm} 0.03$			1.8 ± 0.1	P
D4	0.54 ± 0.04			1.8 ± 0.1	40K→40Ar
D5	1.11 ± 0.02			$0.78 {\pm} 0.01$	3.2keV
D6	0.95 ± 0.03	$(1.3\pm0.1)\ 10^{-3}$		$0.81 {\pm} 0.01$	b 2.0 ₇
D7	0.96 ± 0.03	$(1.0\pm0.1)\ 10^{-3}$		$0.80 {\pm} 0.01$	× 1.8
D8	$0.76 {\pm} 0.02$	$(0.4\pm0.1)\ 10^{-3}$		$0.74 {\pm} 0.01$	Ē 1.6-
		. ,			- ≩ 1.4 D3 D4

²³²Th, ²³⁸U: determined by alpha rate following PSA and analysis of BiPo sequences at a level of a few μ Bq/kg, but ²¹⁰Pb out of equilibrium

First background model: inputs

Detailed **background model** for each detector of **ANAIS-112**, based on Geant4 Monte Carlo simulations and accurate quantification of background sources

Cosmogenic activity in crystals: short-lived Te, I isotopes, ³H, ²²Na, ¹⁰⁹Cd, ¹¹³Sn

J. Amaré et al, JCAP 02 (2015) 046; Astropart. Phys.97 (2018) 96; P. Villar et al, Int. J. Mod. Phys. A 33 (2018) 1843006

ANAIS-112

 155 ± 11

 168 ± 11

 61.8 ± 3.1

 43.7 ± 2.3

 53.8 ± 2.7

 55.6 ± 2.7

 56.4 ± 2.8

First background model: results

• Comparison with ANAIS-112 spectra (3y) at low and high energy

 $(hev)^{10}$ $(hev)^{10}$

Unexplained events <3 keV could be due to:

- some unknown background source not considered in the model
- non-bulk scintillation events leaking in Rol
- Individual contributions in ANAIS-112

```
^{40}K and ^{22}Na peaks and ^{210}Pb (bulk+surface) and^{3}H continua are main contributors in Rol^{210}Pb:^{3}2.5%^{3}H:^{26.5\%}^{40}K:^{12}%^{22}Na:^{2.0\%}
```


First background model: results

Time evolution:

Measured rate of ⁴⁰K and ²²Na events (identified by coincidences with HE gamma) has proper decay

Model reproduces the rate decay inside and outside the Rol

Machine-learning techniques: method

A **Boosted Decision Tree (BDT)** developed to improve the rejection of PMTrelated noise: multivariate analysis combining several variables into one parameter

I. Coarasa et al, JCAP11(2022)048

- Training populations independent from background data:
- Signal: in situ neutron calibrations with ²⁵²Cf

	<u>Standard analysis</u>
Cf	$P_1 = \frac{\sum_{100 \text{ ns}}^{600 \text{ ns}} A(t)}{\sum_{0 \text{ ns}}^{600 \text{ ns}} A(t)} \qquad \mu_p = \frac{\sum_i A_i t_i}{\sum_i A_i} \qquad n_0, n_1$
B01	$P_2 = \frac{\sum_{0 \text{ ns}}^{50 \text{ ns}} A(t)}{\sum_{0 \text{ ns}}^{600 \text{ ns}} A(t)} \qquad Asynphe = \frac{nphe_0 - nphe_1}{nphe_0 + nphe_1}$
	$CAP_{x} = \frac{\sum_{0 \text{ ns}}^{x \text{ ns}} A(t)}{\sum_{0 \text{ ns}}^{t_{max}} A(t)}$
	<i>x</i> = 50, 100, 200, 300, 400, 500, 600, 700, 800 ns

Machine-learning techniques: method

A **Boosted Decision Tree (BDT)** developed to improve the rejection of PMTrelated noise: multivariate analysis combining several variables into one parameter

Rate (counts/keV/kg/day)

- **Cuts** on BDT (-1 noise, +1 signal) defined for each energy bin and detector

- Much improved **acceptance efficiency** by **30%** and **background reduction** by **~18%** in1-2 keV, although with still some excess over background model

I. Coarasa et al, JCAP11(2022)048

energy (keV)

Machine-learning techniques:results for annual modulation

Improved annual modulation results with 3 y data $2.5\sigma \rightarrow 2.8\sigma$

I. Coarasa et al, arXiv:2404.17348, accepted in Comm. Phys.

Incompatible with DAMA/LIBRA at 3.2σ (1.9 σ), with a present sensitivity of 2.8σ

Machine-learning techniques:results for annual modulation

Incompatible with DAMA/LIBRA at 3.9 (2.9) at [1-6] ([2-6]) keV

Machine-learning techniques:results for annual modulation

Ρ

R

Ε

L

L

Μ

Ν

Α

R

Y

Open data available for independent analysis at Dark Matter Data Center:

https://www.origins-cluster.de/odsl/dark-matterdata-center/available-datasets/anais

Sensitivity to DAMA/LIBRA result

$$S = S_m^{DAMA} / \sigma(S_m)$$

Considering obtained background from machine-learning techiques: 5σ in 8 y

Updated background model

Motivation: activity of ³H and ²¹⁰Pb on crystal surface not independently measured, but both are very relevant in LE counting rate and time evolution \rightarrow Improved description is being attempted by fitting simulations to data

- **Experimental input:** 7-year data in HE and LE regions (excluding Rol), anticoincidence and coincidence events
- Geant4 version: v10.7 vs v9.4.1
- Extended **geometry**, improved description of PMTs
- **Multiparametric fit** using RooFit considering different simulated contributions from all sources to get pdfs

9 crystals (K40, Pb210, Th232, U238, U235, H3, Na22, Cd109, Sn113, I's,Te's)

18 PMTs (K40,Ra226,Th232,U238,U235)

Others: 9 Cu housing, 18 SiPads, 18 Quartz windows (K40, Ra226, Th232, U238)

S. Cebrián, LRT2024, 4th October 2024

Updated background model

• **Optical simulation** of light signals ongoing to understand the response to specific components of background

Prospects: ANAIS+

Motivation: replacing PMTs by **SiPMs** (at 100 K) could allow a **reduction in energy** threshold <0.5 keV_{ee}

 Better sensitivity, specially to light WIMPs and SD interaction

First ANAIS+ set-up:

Scintillator crystal: Nal(Tl)/Nal 1" cube.

SiPMs array: HAMAMATSU S13361-6050AE-04

Readout electronics: MUSIC (Multiple Use SiPM Integrated Circuit).

Optical fiber placed under the scintillator cube used to inject LED light to the SiPMs array.

¹³³Ba spectra Room T [Vov \approx 6 V]

SiPMs characterization and study of light collection from room temperature to \approx 30 K

Prospects: ANAIS+

Test set-up at Zaragoza Cryogenic facility ready

ANAIS+ prototype prepared and tested at LNGS

Four faces covered by SiPMs Further tests at Zaragoza

Medium / long term: test in **LAr** (thermal bath+veto) at Canfranc in collaboration with **CIEMAT**

Summary

• ANAIS-112 is taking data smoothly for 7 years to have a definitive, independent test of the DAMA/LIBRA annual modulation result

No modulation is observed; preliminary results are incompatible with DAMA/LIBRA signal at 3.9σ (2.9σ) at [1-6] ([2-6]) keV from 6-year data

- 5σ sensitivity is expected for late 2025
- Thorough **background study** underway since the beginning of the project
 - First background model based on quantified activities from different techniques
 - Helped to identify main background sources
 - Described well time evolution and measured spectra except at very low energy
 - Machine-learning techniques have allowed to partly reduce observed excess, improving significantly the sensitivity
 - Updated background model in development by fitting data to better describe some components
- **ANAIS+** project with SiPMs underway, with first prototypes in development

Acknowledgements

Thank you for your attention!

ANAIS experiment operation is presently financially supported by MICIU/AEI/10.13039/501100011033 (Grants No. PID2022-138357NB-C21 and PID2019-104374GB-I00), and Unión Europea NextGenerationEU/PRTR (AstroHEP) and the Gobierno de Aragón. Funding from Grant FPA2017-83133-P, Consolider-Ingenio 2010 Programme under grants MULTIDARK CSD2009-00064 and CPAN CSD2007-00042, the Gobierno de Aragón and the LSC Consortium made possible the setting-up of the detectors. The technical support from LSC and GIFNA staff as well as from Servicios de Apoyo a la Investigación de la Universidad de Zaragoza (SAIs) is warmly acknowledged.