

Exploring the keV scale energy spectrum of CUORE Alberto Ressa on behalf of the CUORE Collaboration

LRT 2024, Kraków

Istituto Nazionale di Fisica Nucleare

INFN

Introduction

- Thermal phonon detection with cryogenic calorimeters allows the study of a wide energy range
- Fully exploit CUORE >2 ton yr of $TeO₂$ exposure down to keV scale for a broad variety of searches
- CUORE demonstrated this technology at the ton-scale in a low background environment to search for the neutrinoless double beta decay

- 1. Interacting particles deposit energy into the crystal
- 2. The energy release heats up the crystal via thermal phonons
- 3. The temperature increase is converted into an electric signal by a cryogenic sensor (e.g. thermistor)

- ➡ Cryogenic temperatures (about 10 mK) make it possible to turn the energy deposit into a readable temperature increase
- → Thermalization of crystals requires ~ seconds
	- handle only low rate processes
	- allow pulse shape reconstruction

(~ 10 eV)

Limited by vibrational and electronic noise (~keV)

Low Energy Threshold (∼ **keV)**

Low Background:

Radiopure materials and strict cleaning procedures

Operated underground to shield against cosmic rays

Energy Resolution (<1**% @MeV)**

Thermal phonon detection:

Negligible intrinsic resolution (~ 10 eV)

Limited by vibrational and electronic noise (~keV) **Low Energy Threshold (**∼ **keV)**

External layers against natural radioactivity

Radiopure materials and strict cleaning procedures

Operated underground to shield against cosmic rays

Energy Resolution (<1**% @MeV)**

Thermal phonon detection:

Negligible intrinsic resolution (~ 10 eV)

Limited by vibrational and electronic noise (~keV)

External layers against natural radioactivity

Large Exposure (up to ton yr):

The technology can be scaled with a modular structure

Limited only by cryogenic power

Low Energy Threshold (∼ **keV)**

CUORE Experiment

Cryogenic Underground Observatory for Rare **E**vents

- 988 natural TeO₂ $5x5x5$ cm³ crystals equipped with NTD-Ge thermistors
- 19 towers of 13 floors
- 742 kg of TeO₂ (i.e. 206 kg of) ¹³⁰*Te*

- Operated in one of the world-leading dilution refrigerators in terms of power and size
- 1 m³ experimental volume: TeO₂ crystals kept at \sim 12-15 mK
- Located at Laboratori Nazional del Gran Sasso (LNGS)

Can we go to lower energies?

- Noise strongly affects the detected events
- Only a subset of CUORE array detectors achieve this energy threshold
- We need a dedicated analysis procedure

Analysis Methods

• Denoising: mitigate the noise by correlating it with auxiliary devices (microphones, accelerometers, seismometers)

[https://doi.org/10.1140/epjc/s10052-024-12595-y](https://doi.org/10.48550/arXiv.2311.01131)

• Optimum Trigger: apply an offline trigger on filtered waveforms to lower the energy threshold

<https://doi.org/10.1088/1748-0221/6/02/P02007>

Low Energy Events

- A variety of non-physical phenomena (e.g. induced vibrations, electronic spikes) produces temperature rise in cryogenic calorimeters
- To identify spurious events, we rely on pulse shape studies based on similarity of a pulse to the ideal one
	- This estimate is less reliable at lower energies due to higher levels of noise.
	- Down to what energy we can separate the two populations?
	- It depends detector-by-detector

Selection procedure:

Selection procedure:

1. **Events Selection**:

apply a detector by detector pulse shape cut

2. **Detectors Selection**:

The presence of non-physical events is identified by:

- Rise in the pulse shape parameters
- Increased events rate at lower energy

Selection procedure:

1. **Events Selection**:

apply a detector by detector pulse shape cut

2. **Detectors Selection**:

The presence of non-physical events is identified by:

- Rise in the pulse shape parameters
- Increased events rate at lower energy
- **■** determine if the cut is sufficient to reject spurious events in a given **Region of Interest (ROI)**.
- Selection cuts defined to balance the loss of **efficiency** and **exposure** with the reduction in **background level** in the ROI

Data Selection Results

- Which CUORE detectors are selected for low energy?
	- a specific production batch of thermistors (lower thermal noise)

Performance at Low Energy

- We estimate energy resolution at the baseline and with Te X-rays
- We varied ROIs energy intervals from 3 to 40 keV
- We estimate efficiencies at low energy by:
	- Te X-ray peaks at 27-31 keV (Pulse Shape efficiency)
	- Injected thermal pulses at varying amplitude

Data Selection Results

We focused on two ROIs:

- [10,20] keV: minimum required for Solar Axion search at 14.4 keV
	- About 30% of exposure is saved
- [3,10] keV: the lowest accessible in **CUORE**
	- Few % of the exposure is saved
	- Available only at ~12 mK
	- Improved with oscillation damping system

Low Energy Spectrum

- **• Single Site events: fully contained in a single CUORE crystal**
- **• Detectors with Optimum Trigger threshold < ROIs lower edge**
- **• Pulse shape cut applied**
- **• Selected Detectors**

Low Energy Spectrum

- The stricter selection improves resolution and highlights background structures
- Spectral features are under investigation
	- Tellurium Isotopes $(^{125}Te, \frac{123}{Te}, \frac{121}{Te})$
	- Surface lead contaminations (210*Pb*)

123Te investigations

- 123 Te has 0.9% of natural abundance (about 1.8 kg in CUORE)
- Predicted to decay by EC, its detection has a controversial history (first detected than refuted)

123Te investigations

- 123 Te has 0.9% of natural abundance (about 1.8 kg in CUORE)
- Predicted to decay by EC, its detection has a controversial history (first detected than refuted)

123Te investigations

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.56.R1675

- In CUORE we observe again peaks corresponding to the K (30.5 keV) and L₁ (4.7 keV) shells
	- Rate is constant in time, and the associated half-life longer than the best limit
- The L₃ line at 4.1 keV is predicted to have the highest intensity, but is missing in our spectrum!
- Investigations are ongoing

Low Energy Spectrum for ds3817

Conclusions & Perspectives

- CUORE as a multipurpose experiment (neutrinos, nuclear decays, dark matter...)
- Spectrum investigation foreseen in the next months with the optimized set of data
- CUORE cryostat upgrade in view of CUPID: See next talk from P. Loaiza

CUORE

- A 2nd CUORE run is foreseen, with improved vibration environment
- It aims at accessing lower thresholds for dark matter studies
- Low Energy studies provide key insight for the upgrade

Thank You!

CUORE

Technology Lawrence Livermore
A National Laboratory

Backup Slides

210Pb contaminations

- Surface contamination of TeO₂ and copper
- It can explain the structures we observe at 10-13, 30 and 37 keV
- It evidences nuclear recoils at 100 keV

Double Site events

CUORE

Cryogenic Underground Observatory for Rare **E**vents

- Operated in a world leading dilution refrigerator in terms of power and size
- Equipped with $4(+1)$ Pulse Tubes for cooling to $4K$
- Nested co-axial copper vessels at decreasing temperatures
- 15 tons cooled below 4 K and 3 tons below 50 mK
	- Searching for $0\nu\beta\beta$ of ¹³⁰Te at ~2.5*MeV*
		- Alternative mode of the Standard Model 2*νββ*
		- Test Majorana nature of the neutrino and Total Lepton Number violation

Analysis Methods

Optimum Filter:

suppress the frequencies most affected by the noise relying with ideal pulse and noise spectrum

Thermal Gain Correction: correct amplitude dependence on the operating temperature \sim baseline) drift by using the injected thermal pulses

<https://arxiv.org/abs/2404.04453>

Energy Calibration: based on measurements with external $232Th-60Co$ source deployment

The pulse shape cut levels and the subset of selected detectors are defined to maximize the Significance and optimise the sensitivity to the axions coupling constant

- Evaluated from a low energy signal template: Te X-rays at 27-31 keV
- Defined by the selected detectors
- Estimated in the ROI

It balances the loss in **signal efficiency** and **exposure** with the gain in **background level**.

$$
S = \frac{\varepsilon_{PS} \cdot M \Delta T}{\sqrt{B}}
$$

Energy Resolution

Other Threshold algorithms

Coincidence Tagging

- Time window optimized on Te X-rays signal-to-background ratio
- The algorithm takes into account detectors location in the array

Solar Axions signatures

Production

- Primakoff conversion: nuclear plasma interacts with blackbody photons $(kT = 3keV)$, and produce an axion
- Atomic Fe deexcitation, axio-Bremmstralhung, $\frac{1}{2}$
axil-compton scattering
etection
Convert axions back to photon axil-compton scattering

Detection

- Convert axions back to photon
	- by interacting with crystalline electric field: modulated signal
	- Through a magnetic field (inverse Primakoff)
- Compton Scattering axions to photon

10.1088/1475-7516/2013/12/008

 10

Solar axions interaction with crystalline structure

Different mechanism to detect the axions from 57Fe line: **Inverse Coherent Bragg-Primakov Conversion**

- Axion couples to a crystal lattice charge through a virtual photon
- The interaction produce a photon only if the Bragg's condition is satisfied
- dependent by the Sun-CUORE angle which varies over a day

https://iopscience.iop.org/article/10.1088/1475-7516/2016/02/031

Other Experiments

https://iopscience.iop.org/article/10.1088/0256-307X/38/1/011301 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.082004 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.161805

Sensitivity Validation

210Pb From Copper surfaces

- Surface 210Pb can decay emitting xrays that hit TeO2 producing this spectrum in single site events
- Peaks are present in all copper components of CUORE
- This can explain our excess at 13 keV
- It also provides a peak at about 30 keV

- Axions are appealing dark matter candidates in addition to solving the strong CP problem
- The Sun is an optimal axion flux source thanks to the high temperature and density, and it provides a simple experimental signature (among many…)

∝ *gae*

Monochromatic **14.4 keV** flux from thermally populated ⁵⁷*Fe* excited level

Converted into monochromatic **14.4 keV** peak by interacting with absorbing material's electrons

https://iopscience.iop.org/article/10.1088/1475-7516/2013/05/007

Sensitivity to Solar Axions

$$
N_a = \boxed{\Phi_a^{Fe}} \cdot \boxed{\sigma_{ae}} \cdot N_{TeO_2} \cdot \Delta T
$$

Axio-electric effect cross section ∝ g_{ae}^2 Axion flux from $57Fe$ in the Sun $\propto g_{aN}^2$

- Assume a continuous background and no signal
- Use Exposure, Background Level, and Energy Resolution as input
- Estimate count sensitivity at 90% C.I. from Poisson probability

We aim to improve the previous result with CUORE technology (4 crystal data collection in a different cryostat) by an order of magnitude