

The Background Control of PandaX-4T and A Low-background PMT for PandaX-xT

Youhui Yun, Shanghai JiaoTong University

On behalf of the PandaX Collaboration

(2461352794@sjtu.edu.cn)

2024/10/04

LRT2024

What is PandaX-4T?

Schemetic diagram of xenon TPC

- PandaX-4T is a multi-ton Xenon TPC that searches for rare signals such as dark matter and neutrinoless double β decay.
- We are planning to construct PandaX-xT to boost the sensitivity.
- These backgrounds need be measured and controlled.

Pb-214 51% Xe-133 Xe-133 1% 9%

Material

Background composition of 134 Xe 0v $\beta\beta$, Phys. Rev. Lett. 132, 152502

2

Youhui Yun, LRT2024

arXiv:2408.00664v1

Background control for PandaX-4T

Background measurement program

- Internal: ²²²Rn and ⁸⁵Kr in xenon
- External: radioactive isotopes (²³⁸U, ²³²Th, ⁶⁰Co, etc) in detector components and environment

Background Control Method

- Low-background material screening
- Distillation
- Surface treatment

Background	Origin of the background	Measurement system	Control method
Internel	²²² Rn in xenon	radon emanation system	distillation, screening
Internal	⁸⁵ Kr in xenon	krypton assay station	distillation
External	Isotopes in the bulk	HPGe counting station, ICPMS	screening
	surface contamination	alpha detector	surface treatment

Background measurements and control methods in PandaX-4T

Background measurement and control method

Measurement systems

- HPGe counting stations
- ICPMS
- Radon emanation systems
- Krypton assay station
- Alpha detector

HPGe counting stations

- A type of semiconductor detector (excellent energy resolution, low detection threshold)
- Located in the China Jin-Ping Underground Laboratory (CJPL)

HDCo dotostor	ID1	201	201
nrge delector	JPT	JPZ	JP3
Crystal mass [kg]	3.7	0.6	0.9
Relative detection efficiency	175%	35%	51%
FHWM@1332 keV [keV]	2.7	2.5	2.0
FHWM@662 keV [keV]	2.5	2.3	1.4
60-2700 keV Integral [counts/kgGe/day]	594	1039	1572

HPGe Detector Parameters, Nuclear Techniques 008 (2022), 045

Muon flux of underground lab Ann.Rev.Nucl.Part.Sci.,2017,67:231-251

HPGe counting stations

- 10 cm oxygen-free copper shield and 20 cm lead shield
- Stainless steel vacuum chamber to avoid air ²²²Rn in the counting chamber
- Low MDA and ~1000 samples screening since 2017 for PandaX, JUNO, etc

HPGe counting station photo

ICPMS

- ICPMS: Agilent 7900
- Class10 cleanroom for sample preparation
- Resin Extraction Method: TEVA/UTEVA resin

TEVA、UTEVA resins columns for U/Th extraction from copper solution

Detection limits	[pg/g]	[uBq/kg]
²³² Th	0.04	0.14
²³⁸ U	0.07	0.90

Detection limits of ICPMS

Radon emanation system

- Four radon emanation measurement systems with electrostatic collection technique was designed
- A radon trap system is introduced to boost the sensitivity (trap efficiency: 89.18 ± 4.15% @ 1 slpm 77 K)

Schematic diagram of radon emanation system

Actual picture of radon emanation system

Radon emanation system

- Use polishing (mirror, mechanical and electrochemical) and coating (epoxy, mylar etc) to reduce the background, more details see https://indico.fais.uj.edu.pl/event/1/contributions/119/
- The background can reach 0.03±0.01 mBq (@12.3 L)

Internal surface after polishing

Internal surface after epoxy coating

Krypton assay station

- Residual gas analyzer (RGA) and the cold trap combination are used to measure krypton concentration in xenon, the best sensitivity reaches ~10 ppt
- The enrichment system (mainly made of vacuum chamber, cold head and heating rod) makes the sensitivity increase three times.

500

Cold head and the inner structure of enrichment system

Krypton assay station

Alpha detector

- ORTEC commercial alpha detector
- Provide surface measurements (e.g. ²¹⁰Po) for different materials

Energy calibration of alpha detector

Alpha detector performance

Sample screening in alpha detector

12

Control Methods

- Screening low-background materials
- Distillation
- Surface treatment

Distillation

- An online cryogenic distillation system was designed to remove krypton and radon in xenon
- Two modes
 - Krypton removal: a 7 orders of magnitude reduction @10 kg/h
 - Radon removal: a radon reduction factor of 190 @10 slpm (distillation tower only)

Diagram of the distillation tower and detector, 2024 JINST 19 P07010 2021 JINST 16 P07046

oils and oxides for different materials.				
Material Treatment		Reagent		
copper	pickling and passivation	sulfuric acid+hydrogen peroxide, citric acid		
	degrease	Alconox		
	ion gun blowing	-		
Stamless steel	ultrasonic cleaning	Alconox, ultrapure water		
	ion gun blowing	-		
teflon	ultrasonic cleaning	alcohol, acetone, ultrapure water		
	acid soaking	HNO ₃		
nook	ion gun blowing			
реек	ultrasonic cleaning	ultrapure water		

PandaX-4T surface treatment methods

Before(left) and after(right) pickling and passivation copper

Measurement	1	2	3
Dissolved mass[%]	0.20	0.21	0.24
Removal efficiency[%]	80.80±4.06	73.56±6.24	83.78±3.08

Copper surface ^{210}Po removal efficiency through pickling and passivation JHEP 06 (2022) 147

Mutiple methods are used to remove the surface radioactivities (²¹⁰Po, ²¹⁰Pb etc), dust, oils and oxides for different materials.

Surface treatment

A low-background PMT for PandaX-xT

PMT characteristics

PMT used in three generations of PandaX

- A new 2-inch low-background R12699 PMT for next generation LXe detectors: PandaX and Hamamatsu
 - 2x2 individual anodes
 - Operation at low temperatures down to -110°C
 - High quantum efficiency (>30 %) at 175 nm
 - Fast time response
 - Low background
 -

alloy, ceramic, etc) are assayed with JP1 HPGe counting station. • PMT radioactivities are measured to confirm batch by batch.

Radioactivity improvement

The radioactivity of all material (aluminum, kovar, stainless steel, multiple glasses,

Quartz Screening Oct 4, 2024

PMT Screening Youhui Yun, LRT2024 MDA for PMT counting

Radioactivity improvement

- ⁶⁰Co mainly from Kovar flange, pins etc and ²³⁸U(late) mainly from hermetic glass.
- The kovar are replaced to get version 1 and both replaced to get version 2

Radioactivity improvement

 Mutiple batches of R12699s are measured to confirm the ⁶⁰Co radioactivity reduction from v0 to v1 and ²³⁸U(late) reduction from v1 to v2.

PMT&SiPM radioactivity comparsion

PMT&SiPM Comparsion								
PMT (mBq/cm ²)	⁶⁰ Co	¹³⁷ Cs	⁴⁰ K	²³² Th(e)	²³² Th(1)	²³⁵ U	²³⁸ U(e)	²³⁸ U(l)
R11410-10 (LZ)[1]	0.059(6)	-	0.38(3)	0.043(25)	0.025(6)	0.025(19)	0.15(7)	0.028(6)
R11410-20 (XENONnT)[2]	0.033(1)	<0.004	0.44(2)	0.015(2)	0.014(1)	0.012(3)	0.28(6)	0.015(2)
R11410-23 (PandaX-4T)[3]	< 0.073	< 0.057	<0.69	<0.24	<0.095	<0.88	<1.75	<0.12
R12699 (v2)	0.003(1)	< 0.003	1.58(10)	<0.011	< 0.003	<0.013	< 0.054	0.004(1)
R13111 (XMASS)[4]	0.003(1)	-	0.052(13)	0.005(2)	-	-	<0.036	0.011(2)
SiPM (µBq/cm ²)	⁶⁰ Co	¹³⁷ Cs	⁴⁰ K	²³² Th(e)	²³² Th(1)	²³⁵ U	²³⁸ U(e)	²³⁸ U(l)
S13371 Hamamatsu[5]	-	-	<26	<9.2	<6.6	-	<908	<7.5
FBK[6]	-	-	~3e-3	~6e-4	-	-	<4e-4	-
MPPC Hamamatsu[6]	-	-	<3	<3	-	-	<7	-
SiPM SensL[7]	<3.3	<3.6	<60	<33.3	<7.8	<6.9	<1139	<8.9

[1]: Eur. Phys. J. C 80 (11) (2020) 1044.

- [3]: JHEP06(2022)147
- [5]: Journal of Instrumentation 13 (2018) P10022
- [7]: Journal of Instrumentation 10 (2014) .201

[2]: Eur.Phys.J.C 82 (2022) 7, 599
[4]: J. Phys. Conf. Ser. 1468 (2020) 012231.196
[6]: SiPM R&D for NEXO, 2019.

- R12699 PMT radioactivities
 - ⁶⁰Co: 1 order of magnitude better than LZ/XENON, comparable to XMASS
 - ²³⁸U(late): 3-7 times better than LZ/XENON/XMASS
 - ⁶⁰Co and ²³⁸U levels similar to SiPM

Radon Emanation Rate

• The radon emanation rate of multiple batches of R12699 was screened.

Туре	Radon Emanationm
R11410 (LZ)[1]	1.9 ^{+1.7} mBq/pc
R11410 (XENON-nT)[2]	2 ± 1 µBq/pc
R12699 v2 batch1	<3.0 µBq/pc
R12699 v2 batch2	<3.3 µBq/pc
R12699 v2 batch3	<2.1 µBq/pc

PMT radon emanation rate

[1] Eur. Phys. J. C 80 (11) (2020) 1044 [2] Eur.Phys.J.C 82 (2022) 7, 599

R12699 measurement

- Background screening and control for PandaX-4T
 - Mutiple radioassay programs support the measurements
 - Remove radon and krypton using distillation
 - Control surface contamination by the surface treatment
- A new 2-inch low-background PMT has been developed to the community
 - After replacement of materials, its ⁶⁰Co ~ 0.06 mBq/PMT and ²³⁸U(late) ~ 0.1 mBq/PMT
 - A promising option for the next generation rare event search experiment

Thanks!

Serial Number	Chamber Type	Polishing	Volume[L]	Location	Blank [mBq]
0	counting	Mechanical+ mirror+electr ochemical	7.4	SJTU	0.07±0.03
1	counting	Mechanical+ mirror	12.9	SJTU	0.28±0.02
2	emanation	Mechanical+ mirror	12.9	SJTU	2.05±0.37
3	emanation	Mechanical+ mirror	12.9	SJTU	0.99±0.24
4	emanation	Mechanical+ mirror	12.9	SJTU	1.49±0.29
5	emanation	Mechanical+ mirror	12.9	JP	1.62±0.29
6	counting	Mechanical+ mirror	12.9	JP	0.034±0.009

Alpha Measurement

- Quartz sample
- Cleaning procedure: wipe with alcohol 3 times

	Before pollution	After pollution	Clean 1 st	Clean 2 nd
Rate [mHz]	0.40±0.16	8.53±1.00	1.00 ± 0.29	0.51± 0.18

• PTFE sample

Cleaning procedure	None	35% HNO ₃ for 3 days	35% HNO ₃ for 8 days
Rate [mHz/mm2]	<7.22e-04	<1.57e-05	< 2.45e-05
Supposed Po-210 rate in TPC [mHz]	< 3266	< 71	< 111

Consistent with data

• Assume ROI [1,10] keV

	Surface neutron	Total neutron
MC Rate [mDRU]	6e-5	2.8e-4

Surface treatment for copper

Investigate radon daughter Po-210 removal method from copper surface

Pickling solution	Dissolved mass [%]	Count rate pre cleaning [mHz]	Count rate post cleaning [mHz]	Removal efficiency [%]
	0.20	13.5±0.4	2.6±0.2	80.8±4.1
1%H ₂ SO ₄ +3%H ₂ O ₂	0.21	5.4±0.3	1.4±0.1	73.6±6.2
	0.24	22.7±0.5	3.8±0.2	83.7±3.1
	0.16	20.4±0.5	17.5±0.5	14.2±3.3
15%HNO ₃ +2%H ₂ O ₂	0.21	11.4±0.4	9.9±0.3	13.5±4.2
	0.22	11.6±0.4	9.5±0.3	18.0 ± 4.3
	0.19	13.0±0.4	0.03 ± 0.03	99.8±4.3
5%C ₆ H ₈ O ₇ +8%H ₂ O ₂	0.19	12.9±0.4	0.00 ± 0.02	100.0±3.9
	0.20	15.5±0.4	0.00 ± 0.02	100.0±3.9

Krypton assay station

Enrich signal

Enrichment structure

29

Radon emanation systems

Hemisphere copper chamber with 4.93 L volume

Polishing method	Mechanical polishing	Pickling and passivation	Mirror polishing
Roughness [um]	-	0.12	0.087±0.058
Efficiency [%]		27.8 <u>+</u> 0.5	
²³⁸ U Intrinsic [mBq/kg]		<0.0019	
Blank [mBq]	0.54±0.09	0.68 <u>±</u> 0.06	0.32 <u>+</u> 0.04
Blank [uBq/cm ²]	0.35±0.06	0.44±0.04	0.21±0.02

Surface of emanation chambers using different polishing method (left: mechanical, middle: pickling and passivation, right: mirror) Youhui Yun, LRT2024

⁸⁵Kr estimation

- Estimate based on a correlated emission of β-γ coincidence
- Kr/Xe 0.51±0.26 ppt for run0 0.92±0.27 ppt for run1

Tritium

Fitting on S1, keep S2 blinded (getter+flush+pump+ distillation)

Data set	Run0 Set 4	Run0 Set 5	Run1
Tritium (event/day/tonne)	3.0 ± 0.3	1.6 ± 0.2	0.4 ± 0.1

HPGe upgrade: further improving the MDA

- Gamma spectroscopy system with dual HPGe detectors for improved detecting efficiency and coincidence analysis
- Expected MDA of the GS-DHPGe for the plastic sample (diameter: 5 cm, height: 1 cm) with 10 days counting time

Isotope	JP1 MDA / mBq·kg ⁻¹	Expect MDA / mBq·kg ⁻¹	Improved factor
⁶⁰ Co	11.93	6.50	1.84
¹³⁷ Cs	11.84	4.81	2.46
40 K	267.11	92.99	2.87
²³² Th-early	55.54	27.51	2.02
²³² Th-late	32.24	14.02	2.30
²³⁵ U	38.11	11.57	3.30
²³⁸ U-early	291.38	123.31	2.36
²³⁸ U-late	28.94	11.51	2.51

MDA for coincidence setup for the GS-DHPGe [mBq] for the sample (diameter: 1 mm, height: 1mm) with 10 days counting time

Dual High-Purity Germanium Detectors

Isotope	Single HPGe	non $\gamma - \gamma$ coincidence of GS-DHPGe	$\gamma - \gamma$ coincidence of GS-DHPGe
⁶⁰ Co	0.18	0.10	0.03
²⁰⁸ T1	0.44	0.19	0.08
²¹⁴ Bi	0.73	0.29	0.28

PMT Characteristics

P	arameter	R12699-406-M4	R11410-20	Unit
Cathode Sensitivity	Luminous (2856K)	95	90	uA/Im
	Blue Sensitivity Index	10.0	10	-
Anode Sensitivity	Luminous (2856K) 140 315		315	A/Im
Gain		1.5 x 10 ⁶	3.5 × 10 ⁶	-
Anode Dark Current ((after 30min. storage	Each anode) in darkness)	1.5	10	nA
Time Response	Rise Time	1.2	5.5	ns
	Transit Time	5.9	46	ns
	Transit Time Spread (FWHM)	0.41	9	ns
Uniformity Between E	ach Anode	1:1.5	-	-
Pulse Linearity (Each Anode)	at ±2% Deviation	8	20	mA
	at ±5% Deviation	20	-	mA

Characteristics at 25 deg C

PMT Characteristics

Warm and cold temperature test:

- Temperature: 25 deg C and -100 deg C
- Gain of each channel is about 5×10⁶ e⁻ with 1000 V
- Dark rate at -100°C is about 10 Hz per channel
- After-pulse: <1%

Setup for the cold test

Youhui Yun, LRT2024