Development of a GAGG-based low-background neutron detector

L. Ascenzo, G. Benato, Y. Chu, G. Di Carlo, A. Molinario, S. Vernetto

Low Radioactivity Techniques 2024

Goals of the project

- Develop a new neutron-detector technology alternative to ³He counters capable of measuring the neutron flux <10 MeV in underground environment
- 2. Characterize the detector background and neutron detection efficiency
- 3. Realize a compact and portable setup with ~10 detectors operated with Bonner spheres
- 4. Measure the neutron spectrum inside the CUORE/CUPID radiation shielding
- 5. Measurement campaign in various locations @LNGS

Why GAGG?

- GAGG(Ce) = Gd₃Al₂Ga₃O₁₂ scintillating crystal
 - \circ High gadolinium content \rightarrow High neutron cross section
 - High light-yield (45000 photons/MeV)
 - \circ Capable of α vs β/γ discrimination
- Large size commercially available: up to 6 cm diameter and ~10 cm height
- High density: 6.6 g/cm^3
 - \rightarrow Can reach ~50% containment efficiency for $\gamma \dot{s}$ above 3 MeV
- Excellent pulse-shape discrimination
 - \rightarrow Fully reject α background

Detector prototype

- Ø 5cm, h 5cm crystal
- Hamamatsu R2257 PMT
- CAEN electronics
 - \rightarrow VME crate read-out via V3718 bridge
 - \rightarrow V6533 HV module
 - \rightarrow V1725 digitizer
- Borated Polyethylene shielding for underground measurements

First data (above ground)

- Very first data!
- About 1 day of data taking
- No shielding
- Underbiased PMT to be able to record the full µ spectrum
- Low-energy events due to environmental radioactivity
- Energy threshold ~200-300 keV
- Muon events indistinguishable from β/γ events
 - \rightarrow Cannot use on the surface

Underground measurement campaign

- Calibration data with 232 Th, 238 U and 241 Am γ sources
- Background data inside borated polyethylene (PE) shielding of 20 cm thickness \rightarrow 2.5 months of data
- AmBe calibration inside shielding
 → 4 days of data with different configurations
- Environmental data without shielding
 - \rightarrow 1 month of data

Event reconstruction and detector performance

Event reconstruction

- Energy \propto pulse integral
- Quality cuts on:
 - \circ Baseline slope \rightarrow pre-window pileup
 - $\circ \quad \mbox{Trigger position} \rightarrow \mbox{in-window} \\ \mbox{pileup} \quad \label{eq:position}$
 - \circ Decay time \rightarrow noise spikes

Detector performance

- Energy scale for β/γ linear to ~0.1%
- Energy resolution asymptotically approaching ~4% FWHM on both α and β/γ energy scales

Pulse-shape discrimination

Background characterization

β/γ spectrum

- ⁴⁰K peak from crystal?
 → Doesn't matter, useful for self-calibration
- ²⁰⁸Tl peak from surrounding material
- Continuum between 2.8 and 5 MeV
 → ²³²Th crystal contamination
 → Limiting factor for neutron
 measurement

α spectrum

- Non-linear quenching ~15%
- ¹⁵²Gd peak at 2.2 MeV
- Several peaks from ²³²Th and ²²⁷Ac
 → Delayed coincidence (DC) analysis
 for peak identification
- Residual pile-up events removed with updated analysis

Delayed coincidence analysis

- Search for delayed α-α events from subsequent decays with short half-life values in ²³²Th, ²³⁵U and ²³⁸U decay chains
 - \rightarrow Allows to identify events from lower part of decay chains
- Fit ∆t with flat background + exponential signal
- Include events with inverse order to better constrain the background

Measurement of early parts of decay chains

• Early parts of ²³²Th, ²³⁵U and ²³⁸U decay chains feature only isotopes with very long half life values energies in [4,5] MeV range

 \rightarrow Fit calibrated α spectrum with a combination of Gaussian with fixed μ and

σ

- Early part of ²³⁵U chain not visible
 → Crystal contamination must be from ²²⁷Ac
- Early part of ²³⁸U chain visible, lower part not visible (with delayed coincidence)
- ²³⁸U and ²³⁴U activity not compatible

Further refinement of the analysis is required

Crystal contamination values

Chain	Method	Contamination [mBq/kg]	
		This work	<u>PIKACHU</u> PTEP 2024 033D01
²³² Th high	²³² Th peak	TBD	
²³² Th low	²²⁰ Rn – ²¹⁶ Po DC	2.50±0.06	10.3±0.8
	²²⁴ Ra – ²²⁰ Rn DC	2.33±0.08	
²³⁵ U high	²³⁵ U peak	TBD (limit?)	4.1±1.9
²³⁵ U low	²¹⁵ Po – ²¹¹ Pb DC	0.90±0.03	3.07±0
	²²³ Rn – ²¹⁵ Po DC	0.77±0.03	
²³⁸ U high	²³⁸ U peak	~13	125.2±1.6
	²³⁴ U peak	~19	154.6±2.4
²³⁸ U mid	²²² Rn – ¹²⁸ Po DC	TBD	<0.28
²³⁸ U low	²¹⁰ Po peak	TBD	5.93±0.44

- Overall α count rate ~20 times lower than for PIKACHU high-purity GAGG
- Lower part of ²³²Th most worrisome background for neutron measurement \rightarrow Delayed coincidence of ²¹²Bi ²⁰⁸Tl seems to induce a too high dead time
- All numbers to be considered as **preliminary!**

Neutron calibration

- AmBe neutron source with ~200 n/s activity in front of GAGG (inside shielding)
- Three measurements with different configurations:
 - 5 cm PE moderator + 5 cm Pb on sides and top to shield from external γ 's
 - 5 cm PE moderator to compare with background measurement
 - $\circ~~5~cm$ Cu to suppress 4.4 MeV γ from ^{12}C de-excitation

Neutron calibration

- Neutron signature: continuum reaching up to ~9 MeV
- Peaks at ~80 keV appearing when AmBe source is used to be understood
- Neutron detection efficiency to be computed via comparison with MC simulations

Next steps

- Refined evaluation of crystal contamination values
- Development of MC simulations and validation against AmBe measurements
- Measurement with mono-energetic neutron source/generator for further validation of MC
- Design of a full-scale setup with ~10 detectors for measuring the neutron spectrum underground @LNGS
- Purification of starting materials for crystal growth?

Acknowledgements

This project is financially supported by the Marie Sklodowska-Curie Grant Agreement No. 754496 and by the Italian Ministry of University and Research (MIUR) through the grant Progetti di ricerca di Rilevante Interesse Nazionale (PRIN 2022, Grant No. 2022WWRZZP).

Finanziato dall'Unione europea NextGenerationEU

