

A gaseous time projection chamber with Micromegas readout for low-radioactive material screening

Shanghai Jiao Tong University

Wenming Zhang

October 1st, 2024

Low Radioactivity Techniques (LRT2024)

Underground rare event detection and background

Neutrinoless double beta decay detection

- CUORE
- 200 kg ¹³⁰Te
- $\succ \overline{\nu_e} == \nu_e$
- Crystal and copper surface contamination

Neutrino detection

➢ JUNO

- 20 kt Liquid Scintillator
- Radon on organic glass sphere surface bring contamination

20	kton LS detector
3%	6 energy resolution
70	0 m underground
Ri	ch physics possibilities
₽	Reactor neutrino for Mass hierarchy and precision measurement of oscillation parameters
	Supernovae neutrino
⇔	Geoneutrino
	Solar neutrino
⇔	Atmospheric neutrino
	Proton decay
⇒	Exotic searches

- Dark matter detection
- PandaX-4T
- 4 t liquid xenon (TPC)
- ➤ WIMP
- Copper and Teflon surface contamination
- Radon from detector and pipeline surfaces

- Radioactivity background
- Cosmic rays and their derivatives
- Lab environment (high-energy gamma, neutron)
- Internal and surface radioactivity of detector materials introduce background (radon exhalation)

The background is crucial as the signals are rare and determines the experiment sensitivity.

Detection Technology	Measurement Object	Sensitivity	Remarks	
Inductively Coupled Plasma Mass Spectrometry	Heavy elements in high- purity oxygen-free copper	ppt	Complex chemical pretreatment	
Neutron Activation Analysis (NAA)	²³⁸ U and ²³² Th in Teflon	sub-ppt, ppt	Utilizes neutron irradiation	
High-Purity Germanium Gamma Detector	 ²³⁸U and ²³²Th in high-purity oxygen-free copper sub-ppb, ppb 		Non-destructive testing, high energy resolution	
betaCage	Radioactivity on the surface of large-area materials	-	Proposed by the CDMS collaboration	
SuperNEMO BiPo-3 detector	²⁰⁸ Tl and ²¹⁴ Bi Inside thin film materials	Background ²⁰⁸ TI : 0.9±0.2 uBq/m ² ²¹⁴ Bi: 1.0±0.3 uBq/m ²	Developed by the SuperNEMO collaboration	
UltraLo-1800	Radioactivity on the surface of large-area materials	Background 1.4 uBq/cm ²	XIA commercial detector	

XIA: UltraLo-1800

Ionization Chamber

- Identify the alpha signals using pulse waveforms (rise time, amplitude, and shape).
- Background 0.14 uBq/cm², for alpha measurement of semiconductor.
- Measurement area: 1800 cm²

- Background ²¹⁴Bi: 1.0±0.3 μBq/m²
- > Background ²⁰⁸TI: $0.9\pm0.2 \mu Bq/m^2$
- Measurement Area: 3.6 m²

Technology of Gas TPC and Micromegas

Gas Time Projection Chamber (TPC)

Samples placed inside, record particle energy, track information

Cathode

Micromegas ۲

Readout: 20×20 cm²

Stainless Steel Mesh Thermal Bonding Film **Readout PCB**

FENG J, ZHANG Z, LIU J, et al. A thermal bonding method for manufacturing Micromegas detectors[J]. 2021, 989: 164958.

Thermal bonding Micromegas, strip readout

Trajectory Reconstruction and S-B Discrimination

- $\succ \alpha$ particle tracks are almost straight, with a **Bragg** peak at the track end.
- a. The starting position of the track --- Identify the background near the field cage.
- b. The track direction --- Identify the background of the **readout plane** and half of the **gas** background.
- c. The number of triggered strips --- Identify short tracks of particles, which are likely from the gas and readout plane.

Subsystems of the Detector

 Data Acquisition System
 (Cobo-Asad, Concentration Board, ASIC Support and Analog-Digital conversion)

Slow Control Monitoring System (voltage, current, and pressure)

Data Analysis Framework (REST, Rare Event Search Toolkit)

9

- Treatment of low-background detector material components
- Oxygen-free copper cathode: Degrease (Alconox) -> Acid wash -> Rinse with ultrapure water -> Dry with nitrogen gas -> Dry in the oven
- > Acrylic + Flexible PCB field cage: Wipe with Alconox -> Clean with ultrapure water -> Dry with nitrogen
- Aluminum inner wall: Wipe with Alconox -> Clean with ultrapure water -> Dry with nitrogen gas
- Gas: Getter purification

Detector internal structure

Copper cathode treatment process

Construction of the Charge Particle Detector

- Time Projection Chamber (0.5-1.5 bar Argon/Xenon)
- Readout plane: 2400 cm² (2×3 Micromegas)
- Drift distance: 10 cm (Volume: 24 L)
- Flexible PCB field cage
- Samples are placed directly on the cathode to ensure complete deposition of alpha energy.

Readout plane - Micromegas Internal detector photo

E-field distribution in the X-Y plane

External detector photo

Testing of the Charge Particle Detector

Muon track starting point distribution map

Check the detector and monitor its long-term stable operation.

Alpha calibration (Am-241 source)

Alpha track starting point distribution map

 Calibrate each Micromegas module with the Am-241 source.

13

Testing of the Charge Particle Detector

Alpha calibration (Am-241 source)

Calibrate the detector with the 5.485 MeV energy peak of the Am-241 to optimize the working conditions of the detector.

Spectrum of Am-241 9.5% FWHM at 5.485 MeV

0.6

0.8

14

Flush rate [L/min]

Gain evolves with amplification fields Gain evolves with drift fields

Cleanroom

Gas--- 1bar Ar-7%CO₂ (0.1 L/min)

89

88

87.5

86.5

85.5

87

86

0.2

0.4

88.5

6 Gain

Intrinsic alpha background of the detector

Gas--- 1bar Ar-7%CO₂ (0.1 L/min)

15

- > Alpha background (Copper cathode + Gas): $(0.14 \pm 0.02) \times 10^{-6}$ Bq/cm²
- Multiple rounds of alpha background test of the detector (uBq/cm²)

Argon gas filled fo	r a month Pickli	ing copper cat	thode R	eplace field cag	e with less acrylic
1.29 ± 0.06	0.82 ± 0.06		0.47 ± 0.0	3 →	0.14 ± 0.02

 (Track-related cut for α signals: Energy cut 1-10 MeV, track direction upwards, FV cut 2.7 cm to exclude backgrounds from the field cage)

Measurement of Acrylic Surface Radioactivity

Alpha track starting point distribution map

- 3 pieces of Acrylic samples: 1730 cm², exposed in the underground lab, Rn~180 Bq/m³
 - Gas --- 1bar Ar-7%CO₂ (0.1 L/min)

Counts [/hr

16 14 12 10 8 6 4 2 00 50 100 150 200 Measure time [hr]

Sample counting rate

- > α contamination (Acrylic+ Gas): 0.91 ±0.03 uBq/cm²
- > α background (Cathode + Gas): 0.14 ± 0.02 uBq/cm²
- Estimated α background of Acrylic sample: 0.77 ~ 0.91 uBq/cm²
- Assuming the gas background is 0.14 \pm 0.02 μ Bq/cm²
- Assuming the gas background is 0

16

Service sample α test (JUNO production)

	No sample	Acrylic 1 (Exposed in the underground lab - Rn~250Bq/m ³)	Acrylic 2 (Wiped with dust-free paper)	Acrylic 3 (Cleaned with alcohol)	Acrylic 4 (Rinsed with pure water + nitrogen gas)
Measure area [cm ²]	1889	1730	1730	1270	1270
Measure time [hr]	187	160	170	185	252
Contamination (Acrylic + Gas) [uBq/cm ²]	-	0.91 ± 0.03	0.45 ± 0.03	0.18 ± 0.03	0.25 ± 0.03
Background (Copper cathode + Gas) [uBq/cm ²]	0.14 ± 0.02	-	-	-	-
Estimated contamination of Acrylic [uBq/cm ²]	-	0.77 ~ 0.91	0.31 ~ 0.45	0.04 ~ 0.18	0.11 ~ 0.25

 (Track-related cut for α signals: Energy cut 1-10 MeV, track direction upwards, FV cut 2.7 cm to exclude backgrounds from the field cage)

Conclusion

Ultra-Low Background Charged Particle Detector

- Combining gas TPC and thermal-bonding Micromegas.
- Particle track discrimination to reduce backgrounds.
- Large area, high detection efficiency, high sensitivity.

Detector and shield

Next Steps

- Further reduce the intrinsic background of the detector to enhance the its sensitivity. Optimize the design and simplify the operation process.
- Install shielding, and conduct low background material surface radioactivity measurement at the Jinping Underground Laboratory.

Thank you for attention

ええたぎ

Backup

