DEVELOPMENT OF A SILICON BOLOMETER FOR RARE EVENT DETECTION WITH LED SELF-CALIBRATION

ANASTASIIA SHAIKINA, GIOVANNI BENATO, EMILIANO OLIVIERI LRT 2024

SURFACE a's AS A BACKGROUND

Ονββ BOLOMETRIC SERCHES

- Bolometric experiments (e.g., CUORE) face high background from degraded α particles in support materials (mainly copper).
- Next-gen experiments (CUPID, AMoRE) will use scintillating crystals for better particle ID.
- Surface β 's (e.g., ²¹⁴Bi) remain a significant background source.

WIMP SEARCHES

• Searches with scintillating crystals are sensitive to surface contamination of the reflector.

• Searches with **bolometers** face β and nuclear recoil background from surface contamination.

• Searches with TPCs are affected by ²²²Rn diffusion; Rn outgassing can be measured for some materials only.

REQUIREMENTS FOR NEXT-GENERATION a DETECTOR

- Sensitivity to surface ²³²Th or ²³⁸U contamination down to a few nBq/cm²
 - Area $\ge 1 \text{ m}^2$
 - Background $\leq 10^{-8}$ counts/s/cm² in the full α range
- Capability to distinguish different parts of the ²³²Th and ²³⁸U chain that are out of equilibrium
 - Energy resolution \leq 20 keV FWHM to distinguish different α peaks
- Sensitivity to depth profile of surface contamination
 - No deformation induced by e.g. dead layers
 - Energy resolution of few keV FWHM

IONE OF THE EXISTING TECHNOLOGIES SATISFY ALL THESE REQUIREMENTS!

Name	Producer or location	Background level [10 ⁻⁹ cts/s/cm ²]	Background region [MeV]	FWHM @5 MeV [keV]	Active area [m ²]	Sensitivity [nBq/cm ²]
UltraLo-1800	XIA	~250	2.5-10	~400	0.18	~30
PIPS	various	~104	1-10	≥20	0.0012	~104
Bi-Po	LSC	0.1			3.6	~0.1
TPCs	various	1-30	2.5-10	150-300	≤0.24	1-30

CRYOGENIC CALORIMETERS

Highly sensitive calorimeter operated at cryogenic temperature (~10 mK). Energy measured as temperature variation of the absorber:

$$\Delta T(t) = \frac{\Delta E}{C} \exp\left(-\frac{t}{\tau}\right) \quad \tau = C/G$$

MAIN ADVANTAGES

- Detector modularity
- Stable long-term operation possible
- Great dynamic range, few keV to 10 MeV
- Excellent energy resolution (≤10 keV FWHM)
- Possibility to use different absorber crystals and select the one with the lowest radioactive contamination

THE DETECTOR CONCEPT

DETECTOR STRUCTURE

- glued on it.

MATERIAL CHOICE

- 0

DETECTOR HOLDER DESIGN

- diameter cryostat.

• Large-area crystal wafer as an energy absorber. • Mounted on a minimally-sized frame. • Readout by a Neutron Transmutation Doped (NTD) thermistor

• Silicon is selected for its purity and accessibility. High-resistivity intrinsic float-zone silicon is preferred. • Resistivity \ge 10 k Ω ·cm for low heat capacity. \circ Wafer size: 15 cm (29 modules for 1 m²)

• Area facing wafer: ~20 cm² (1/10 of wafer's side). • Frame is suitable for mounting one tower in a 40-50 cm

• Features for easy mounting, dismounting, and sample exchange.

THE DETECTOR PROTOTYPE

PROTOTYPE CONSTRUCTION

- 4 silicon wafers
- **Diameter**: 15 cm
- Thickness: 1 mm
- Mounted on 2 copper frames (2 wafers/frame)

TESTING

• Several runs between February 2023 and April 2024

• Location: installed in the **CROSS** cryostat at Canfranc

DATA

- Runs:
- Detectors:

Run

January

March

1-day run with LED pulses, January 7-days run for alpha measurements, January 3-days background run with 3 detectors, March

A wafer w/o alpha sources (ch 80, 81) A wafer with an alpha source ²¹⁰Po (ch 82)

Channels	Acquired data
80 82	55 Fe, LED 210 Po, LED
80, 81, 82	Background

LED CALIBRATION SYSTEM

SYSTEM DESIGN

• Utilizes a light source (LED or laser) at room temperature

• Light is distributed to detectors via optical fibers

CALIBRATION METHOD

 $\circ~$ Injects light pulses with varying amplitudes to linearize the detector response

• Energy calibration: the Poisson statistics of the light

CURRENT ACHIEVEMENT AND GOALS

Technique proven effective from ~100 eV to 10 keV

Aim to extend this method up to 10 MeV

ADVANTAGES

- $\circ~$ Simplifies the operation of the detectors
- Could potentially replace heater-based stabilization

LED RUN DATA PROCESSING

Ch 82, January

before stabilization

A RUN WITH LED PULSES

0

• **13** amplitudes 200 pulses per amplitude • **Amplitude Variation**: Pulse widths change according to a set pattern • **Pulse Width Pattern**: 200, 150, 100, 75, 50, 30, 20, 10, 5, 3, 1, 0.5, 0.2 µs

A CUSTOM SOFTWARE

- Allows a fast data processing
- Operates on continuous data
- Employs software triggers
- Uses a modular structure

LED RUN DATA PROCESSING

Standard Optimum Filter

Pulser Finder

Stabilization in time

9

Self-calibration

based on the Poisson statistics of the light

PEAK WIDTH

Ch 82, January

SELF-CALIBRATION PRIPCIPLE

Number of photons

$A_{OF} = R \cdot A_{keV} = R \cdot N_{\gamma} E_{\gamma}$

Single photon energy

 $\sigma_{
m kev} = E_{\gamma} \sqrt{N_{\gamma}} + b$

Poissonian term

Baseline resolution

 $\sigma^2_{OF} = R^2 \sigma^2_{kev} = B^2 + R^2 N_\gamma E_\gamma^2 = B^2 + A_{OF} E_\gamma R$

11

SELF-CALIBRATION RESULT

Ch 82, January

$E_{\gamma}=1.51~{ m ev}~(\lambda=820~{ m nm})$

$R = 1.44 imes 10^{-4} \pm 1.5 imes 10^{-5}$

²¹⁰Po peak is inside expected region self-calibration works!

MEASUREMENT WITH α SOURCE

TEMPERATURE DRIFT CORRECTION

FIT FUNCTION

Low-energy tail

Energy in the Alpha Region #counts 000 For ²¹⁰Po peak: 250 FWHM = 107 ± 5 keV 200 150 100 50 4800 5000 5400 5600 Energy [keV] 4600 5200 Ch 82, January Flat Gaussian backgroung $f(E) = A \expigg(-rac{(E-\mu)^2}{2\sigma^2}igg)$ +B $+C\expigg(rac{E-\mu}{\delta}igg) \operatorname{erfc}igg(rac{E-\mu}{\sqrt{2}\sigma}+rac{\sigma}{\sqrt{2}\delta}igg)$

HIGH-ENERGY BACKGROUND

BEFORE COINCIDENCE ANALYSIS

AFTER COINCIDENCE ANALYSIS (M1 ONLY)

Ch 81, March

Channel 80 Energy in the Alpha Region

Ch 80, March

Number of events in ROI \checkmark $B=rac{N_e}{2\cdot\pi R^2\cdot\Delta t}$

Radius of the wafer (7.5 cm²)

Run time

Channel	M1 background rate	M2 background rate
80	2.67×10^{-7}	3.50×10^{-8}
81	5.84×10^{-8}	7.01×10^{-8}

Ch 81, March

CONCLUSIONS

- Successfully developed a silicon bolometric detector optimized for rare event detection.
- Demonstrated the effectiveness of the LED self-calibration system, covering a wide energy range from ~ keV to 10 MeV.
- First alpha measurement was conducted.
- The detector's sensitivity in both high-energy alpha and low-energy regions highlights its potential for next-generation neutrinoless double beta decay and dark matter experiments.

NEXT STEPS

- Replace the LED calibration system with a laser-based system for better precision.
- Assemble the detector in a cleanroom environment to minimize contamination and improve background levels.
- Consider switching to sapphire wafers to improve energy resolution.

ACKNOWLEDGEMENTS

This project is financially supported by the Marie Sklodowska-Curie Grant Agreement No. 754496 and by the Italian Ministry of University and Research (MIUR) through the grant Progetti di ricerca di Rilevante Interesse Nazionale (PRIN 2022 PNRR, Grant No. P2022X7T28).

We would like to thank the CROSS collaboration for making their cryogenic facility available for the presented measurements.

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

GRAN SASSO

SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore 17